728x90

Microsoft SQL Server 2005를 위한 최상의 XML 실행 방법


저자: Shankar Pal, Vishesh Parikh, Vasili Zolotov, Leo Giakoumakis, Michael Rys Microsoft Corporation

2004년 4월

적용 대상:
Microsoft SQL Server

SQL Server 2005에서 XML 데이터 모델링 및 사용법에 대한 지침을 확인하고 자세한 예를 살펴봅니다. 이 문서를 최대한 활용하기 위해서는 SQL Server의 XML 기본 기능에 대해 이해해야 합니다. 기본 자료를 보려면 Microsoft Development Network에서 Microsoft SQL Server 2005의 XML 지원을 참조하십시오.


소개

SQL Server 2000 및 SQLXML 웹 릴리스는 강력한 XML 데이터 관리 기능을 제공합니다. 이러한 기능은 관계형 데이터 및 XML 데이터 간의 매핑에 중점을 둡니다. XML 데이터의 대량 로드, XML 데이터에 대한 쿼리 및 업데이트 기능을 지원하는 XML 중심 접근 방식을 제공하도록 주석 처리된 XSD(AXSD)를 사용하여 관계형 데이터에 대한 XML 뷰를 정의할 수 있습니다. Transact-SQL 확장은 FOR XML을 사용한 XML에 대한 관계형 쿼리 결과 매핑과 OpenXML을 사용한 XML로부터의 관계형 뷰 생성에 대한 SQL 중심 접근 방법을 제공합니다.

Microsoft SQL Server 2005는 XML 데이터 처리에 대한 포괄적인 지원을 제공합니다. XML 값을 XML 데이터 형식 열에 원래대로 저장하여 XML 스키마 컬렉션에 따라 형식이 있거나 형식이 없는 상태로 유지할 수 있습니다. XML 열을 인덱싱할 수 있습니다. 또한 XQuery 및 XML DML을 사용하여 세밀하게 조정된 데이터 조작이 지원되며 XML DML은 데이터 수정을 위한 확장으로 사용됩니다.

또한 SQL Server 2005에는 SQLXML, FOR XML 및 OpenXML 기능이 확장되었습니다. 네이티브 XML 지원이 새로 추가된 SQL Server 2005는 반구조적 및 구조화되지 않은 데이터 관리를 위한 다양한 기능의 응용 프로그램을 개발하기 위한 강력한 플랫폼을 제공합니다.

추가된 모든 기능을 통해 사용자는 자신의 데이터 저장소 및 응용 프로그램 개발에 맞는 다양한 디자인 요소를 활용할 수 있습니다. 이 문서에서는 SQL Server 2005에서 XML 데이터 모델링 및 사용법에 대한 지침을 제공합니다. 이 문서는 다음 두 항목으로 나눠져 있습니다.

① 데이터 모델링
SQL Server 2005에서 네이티브 XML 데이터 형식 및 테이블로 나눠진 XML 등의 여러 방식을 사용하여 XML 데이터를 저장할 수 있습니다. 이 항목에서는 XML 데이터 모델링에 적합한 항목을 선택하기 위한 지침을 제공합니다. 또한 XML 데이터 인덱싱, 속성 승격 및 XML 인스턴스 형식화에 대해 설명합니다.

② 사용법
이 항목에서는 XML 데이터를 서버로 로드하고, 쿼리 컴파일 중에 유형을 유추하는 등의 사용법과 관련된 항목에 대해 설명하고 관련 기능 및 기능 간 차이점에 대해 설명하고 이러한 기능의 적합한 사용법을 권장합니다. 이러한 개념들을 도표로 설명합니다.

데이터 모델링


이 섹션에서는 SQL Server 2005에서 XML을 사용하는 이유에 대해 간단히 설명하고 네이티브 XML 저장소 및 XML 뷰 기술 간의 선택 지침을 제공하고 데이터 모델링 권장 사항을 제공합니다.

관계형 데이터 또는 XML 데이터 모델

데이터가 알려진 스키마를 사용하여 상당히 세부적으로 구조화된 데이터 저장소의 경우 관계형 모델이 가장 적합할 수 있습니다. Microsoft SQL Server는 사용자에게 필요한 필수 기능 및 도구를 제공합니다. 반면에 구조가 유연한 경우(반구조적 또는 구조화되지 않은)나 알 수 없는 경우에는 이러한 데이터의 모델링에 더욱 많은 주의가 필요합니다.

구조적 및 의미적 태그를 사용하여 데이터의 이식성을 보장하기 위해 플랫폼에 의존하지 않는 모델이 필요한 경우에는 XML이 적합합니다. 또한 다음 속성 중 일부만 만족하는 경우에도 적합합니다.
  • 데이터가 산발적으로 되어 있고 데이터 구조를 모르거나 데이터 구조가 이후에 크게 바뀔 수 있습니다.
  • 데이터가 포함 계층(엔터티 간 참조와 반대)을 나타내고 재귀적일 수 있습니다.
  • 태그 및 값의 순서가 데이터에 내재적입니다.
  • 데이터 구조를 기준으로 데이터를 쿼리하거나 데이터 일부를 업데이트합니다.

이러한 조건 중 어느 것도 충족되지 않으면 관계형 데이터 모델을 사용해야 합니다. 예를 들어 데이터가 XML 형식이지만 응용 프로그램이 단순히 데이터베이스를 사용하여 데이터를 저장 및 검색하는 경우에는 [n]varchar(max) 열만 필요합니다.

데이터를 XML 열에 저장하면 엔진에서 데이터가 미리 지정된 XML 스키마에 따라 잘 형성되었거나 유효한지 확인할 수 있는 추가 장점이 있으며 XML 데이터에 대한 세밀하게 조정된 쿼리 및 업데이트가 지원됩니다.

SQL Server 2005에 XML 데이터를 저장하는 이유

다음은 파일 시스템에서 XML 데이터를 관리하는 것과는 반대로 SQL Server 2005에서 네이티브 XML 기능을 사용하는 일부 이유입니다.

  • 백업, 복구 및 복제와 같은 XML 데이터 관리를 위해 데이터베이스 서버의 관리 기능을 사용합니다.
  • XML 데이터를 효율적인 트랜잭션 방식으로 공유, 쿼리 및 수정합니다. 응용 프로그램에 세밀하게 조정된 데이터 액세스가 중요합니다. 예를 들어 XML 문서 내에서 일부 섹션을 추출하거나 전체 문서를 바꾸지 않고 새 섹션을 삽입합니다.
  • 관계형 데이터와 SQL 응용 프로그램이 있으며 응용 프로그램 내에서 관계형 데이터와 XML 데이터 간의 상호 운영이 필요합니다. 도메인 간 응용 프로그램에 대해 쿼리 및 데이터 수정을 위한 언어 지원이 필요합니다.
  • 서버에서 잘 형성된 데이터를 보장하고 선택적으로 XML 스키마에 따라 데이터의 유효성을 검사해야 합니다.
  • 효율적인 쿼리 처리 및 뛰어난 확장성을 위한 XML 데이터 인덱싱 및 최상의 쿼리 최적화 프로그램을 사용해야 합니다.
  • XML 데이터에 대한 SOAP, ADO.NET 및 OLE DB 액세스가 필요합니다.

이러한 조건 중 어느 것도 충족되지 않으면 데이터를 [n]varchar(max) 또는 varbinary(max)와 같은 비-XML의 큰 개체 유형으로 저장하는 것이 좋습니다.

XML 저장소 옵션

SQL Server 2005에서 XML에 대한 저장소 옵션은 다음과 같습니다.

  • XML 데이터 형식의 네이티브 저장소:
    포함 계층, 문서 순서, 요소 및 특성 값과 같은 데이터의 XML 내용이 보존되는 내부 표현으로 데이터가 저장됩니다. 특히 XML 데이터의 InfoSet 내용이 보존됩니다(InfoSet에 대한 자세한 내용은 http://www.w3.org/TR/xml-infoset (영문) 참조). 이러한 데이터는 중요하지 않은 공백, 특성 순서, 네임스페이스 접두사 및 XML 선언과 같은 정보가 유지되지 않기 때문에 텍스트 XML의 정확한 복사본이 아닐 수 있습니다.
    형식 있는 XML 데이터 형식(즉, XML 스키마에 바인딩된 XML 데이터 형식)의 경우 Infoset에 유형 정보를 추가하는 PSVI(스키마 이후 유효성 검사) Infoset의 유형 관련 정보는 내부 표현으로 인코딩됩니다. 이러한 방식은 구문 분석 속도를 크게 향상시킵니다. 자세한 내용은 http://www.w3.org/TR/xmlschema-1 (영문) 및 http://www.w3.org/TR/xmlschema-2 (영문) 의 W3C XML 스키마 사양과 http://www.w3.org/TR/2005/WD-xpath-datamodel-20050211 (영문)의 XQuery 1.0 및 XPath 2.0 데이터 모델 초안을 참조하십시오.

  • XML과 관계형 저장소 간의 매핑:
    주석 처리된 스키마(AXSD)를 사용할 때 XML은 하나 이상의 테이블에 있는 열로 분해되어 관계형 수준에서 데이터의 정확도가 보존됩니다. 이 때 계층 구조는 보존되고 요소 간 순서는 무시됩니다. 스키마는 재귀적일 수 없습니다.

  • 큰 개체 저장소([n]varchar(max) 및 varbinary(max)):
    데이터의 정확한 복사본이 저장됩니다. 이 방법은 법률 문서와 같은 특별한 목적의 응용 프로그램에 유용합니다. 대부분의 응용 프로그램에는 정확한 복사본이 필요하지 않으며 XML 내용으로도 충분합니다(Infoset 정확도).

    일반적으로 이러한 접근 방법을 조합해서 사용해야 할 수 있습니다. 예를 들어 XML 데이터는 XML 데이터 형식 열에 저장하고 속성을 관계형 열로 승격해야 할 수 있습니다. 또는 매핑 기술을 사용하고 비재귀적인 부분을 비-XML 열에 저장하고 다른 재귀적 부분은 XML 데이터 형식 열에 저장할 수 있습니다.

    XML 기술 선택

    XML 기술의 선택(네이티브 XML과 XML 뷰)은 일반적으로 다음과 같은 요소에 달려 있습니다.
  •   저장소 옵션:
    XML 데이터가 큰 개체 저장소(예: 제품 설명서)에 더 적합하거나 관계형 열의 저장소(예: XML로 변환된 라인 항목)에 더 적합할 수 있습니다. 각 저장소 옵션은 문서 정확도를 유지하는 정도가 다릅니다.
  • 쿼리 기능:
    쿼리 특성과 XML 데이터를 쿼리하는 정도에 따라 적합한 옵션이 달라질 수 있습니다. XML 노드에 대한 조건문 평가와 같은 XML 데이터에 대한 세밀하게 조정된 쿼리는 두 가지 옵션의 여러 수준에 맞게 지원됩니다.

  • XML 데이터 인덱싱
    XML 쿼리 성능을 높이기 위해 XML 데이터를 인덱싱할 수 있습니다. 인덱싱 옵션은 저장소 옵션에 따라 다르며 자신의 작업을 최적화할 수 있는 적합한 옵션을 선택해야 합니다.

  • 데이터 수정 기능:
    일부 작업에는 세밀하게 조정된 XML 데이터 수정 기능(예: 문서 내에 새 섹션 추가)이 필요하지만 다른 작업(예: 웹 콘텐츠)은 그렇지 않습니다. 이 경우 응용 프로그램에 대한 데이터 수정 언어 지원이 중요할 수 있습니다.

  • 스키마 지원:
    XML 스키마 문서인지 여부에 관계 없이 스키마로 XML 데이터를 기술할 수 있습니다. 스키마 바인딩된 XML 지원은 XML 기술에 따라 달라집니다.

    물론 각 선택에 따라 성능 특성이 달라집니다.

    네이티브 XML 저장소

    서버에서 XML 데이터 형식 열에 XML 데이터를 저장할 수 있습니다. 이러한 방법은 다음 경우에 적합합니다.

  • 문서 순서 및 문서 구조를 유지하면서 서버에서 XML 데이터를 직관적으로 저장할 수 있는 방법이 필요합니다.
  • XML 데이터에 대한 스키마가 있거나 없을 수도 있습니다.
  • XML 데이터를 쿼리하고 수정해야 합니다.
  • 신속한 쿼리 처리를 위해 XML 데이터를 인덱싱합니다.
  • 응용 프로그램에 XML 데이터 및 XML 스키마 관리를 위한 시스템 카탈로그 뷰가 필요합니다.

    네이티브 XML 저장소는 구조 범위가 다양한 XML 문서나 관계형 구조로 매핑하기 어려운 복잡하거나 서로 다른 스키마를 기반으로 하는 XML 문서가 있는 경우에 유용합니다.

    예제: XML 데이터 형식을 사용하여 XML 데이터 모델링

    각 항목에 대한 별개의 장이 있고 각 장 안에 여러 섹션이 포함된 XML 형식의 제품 설명서를 가정해 보십시오. 섹션에는 하위 섹션이 포함될 수 있으므로
    은 재귀적 요소입니다. 제품 설명서에는 다양한 혼합된 내용, 다이어그램, 기술 자료 등이 포함되며 데이터는 반구조화된 상태입니다. 사용자는 자신이 원하는 항목을 문맥에 따라 검색할 수 있으며(예: "인덱싱" 장 내에서 "클러스터형 인덱스"에 대한 섹션 검색) 기술 수량을 쿼리할 수 있습니다.

    이러한 XML 문서에 적합한 저장소 모델은 XML 데이터 형식 열입니다. 이러한 형식은 XML 데이터의 Infoset 콘텐츠를 유지합니다. XML 열을 인덱싱하면 쿼리 성능이 향상됩니다.

    예제: XML 데이터의 정확한 복사본 유지

    정부 규제에 따라 XML 문서(예: 서명된 문서, 법률 문서 또는 주식 거래 주문)에 대한 정확한 텍스트 복사본을 유지해야 한다고 가정해 보십시오. 이 경우 문서를 [n]varchar(max) 열에 저장할 수 있습니다.

    쿼리를 수행하기 위해서는 데이터를 런타임에 XML 데이터 형식으로 변환하고 이에 대해 XQuery를 실행합니다. 문서가 큰 경우 런타임 변환은 특히 비용이 많이 듭니다. 쿼리를 자주 수행하는 경우 문서를 XML 데이터 형식 열로 중복해서 저장하고 인덱싱하면서도 [n]varchar(max) 열로부터 정확한 문서 복사본을 반환할 수 있습니다.

    XML 열은 [n]varchar(max) 열을 기준으로 계산된 열일 수 있습니다. 하지만 XML 계산된 열에는 XML 인덱스를 만들 수 없으며 [n]varchar(max) 또는 varbinary(max) 열에도 XML 인덱스를 작성할 수 없습니다.

    XML 뷰 기술

    XML 스키마와 데이터베이스의 테이블 간 매핑을 정의하여 영구적 데이터에 대한 "XML 뷰"를 만듭니다. XML 대량 로드 작업에서는 XML 뷰를 사용하여 기본 테이블을 채울 수 있습니다. XPath 1.0을 사용하여 XML 뷰를 쿼리할 수 있습니다. 이 쿼리는 테이블에 대한 SQL 쿼리로 변환됩니다. 비슷하게 업데이트도 이러한 테이블에 전파됩니다.

    이러한 기술은 다음과 같은 경우에 유용합니다

  • 기존 관계형 데이터에 대해 XML 뷰를 사용하는 XML 중심 프로그래밍 모델이 필요합니다.
  • 외부 파트너가 제공한 XML 데이터에 대한 스키마(XSD, XDR)가 있습니다.
  • 데이터 순서가 중요하지 않고, 쿼리 가능한 데이터가 재귀적이지 않거나, 최대 재귀 수준이 미리 알려져 있습니다.
  • XPath 1.0을 사용한 XML 뷰를 통해 데이터를 쿼리하고 수정해야 합니다.
  • XML 데이터를 대량 로드하고 이를 XML 뷰를 사용하여 기본 테이블로 분해해야 합니다.

    이러한 예로는 데이터 교환 및 웹 서비스를 위해 XML로 제공된 관계형 데이터와 고정 스키마가 포함된 XML 데이터가 있습니다. 자세한 내용은 http://msdn.microsoft.com/SQLXML (영문)을 참조하십시오.

    또한 FOR XML을 사용하여 서버에 저장된 관계형 데이터 및 XML 데이터로부터 XML을 게시할 수 있습니다. 자세한 내용은 이 문서의 FOR XML을 사용하여 행 집합으로부터 XML 생성을 참조하십시오.

    예제: 주석 처리된 XML 스키마(AXSD)를 사용하여 데이터 모델링

    XML로 조작하길 원하는 기존 관계형 데이터(예: 고객, 주문 및 라인 항목)가 있다고 가정해 보십시오. 관계형 데이터에 대해 AXSD를 사용하여 XML 뷰를 정의합니다. 이 XML 뷰를 사용하면 XML 데이터를 테이블에 대량 로드하고 XML 뷰를 사용하여 관계형 데이터를 쿼리 및 업데이트할 수 있습니다. 이 모델은 SQL 응용 프로그램을 방해 받지 않고 작동하면서 다른 응용 프로그램과 XML 태그가 포함된 데이터를 교환해야 할 경우에 유용합니다.

    혼합 모델

    관계형 및 XML 데이터 형식 열의 조합은 데이터 모델링에 적합한 경우가 많습니다. XML 데이터의 일부 값은 관계형 열에 저장하고 남은 값이나 전체 XML 값은 XML 열에 저장할 수 있습니다. 이렇게 하면 관계형 열에 생성된 인덱스를 완전히 제어하는 등의 더 나은 성능과 잠금 특성을 얻을 수 있습니다. 하지만 데이터 저장소 관리에 대한 책임이 늘어납니다.

    관계형 열에 저장되는 값은 작업에 따라 달라집니다. 예를 들어 경로 식 /Customer/@CustId를 기준으로 전체 XML 값을 검색하는 경우 CustId 특성의 값을 관계형 열로 승격하고 이를 인덱싱하면 더욱 빠른 쿼리 성능을 얻을 수 있습니다. 하지만 XML 데이터가 포괄적이고 비중복적으로 관계형 열에 분산되어 있는 경우 재조합 비용이 매우 커질 수 있습니다.

    구조화 수준이 높은 XML 데이터(예: 테이블 내용이 XML로 변환되어 있는 경우)의 경우 XML 뷰 기술을 사용하여 모든 값을 관계형 열로 매핑할 수 있습니다.

    XML 데이터 형식을 사용하여 데이터 모델링

    이 섹션에서는 네이티브 XML 저장소에 대한 데이터 모델링 항목에 대해 다룹니다. 여기에는 XML 데이터 인덱싱, 속성 승격 및 형식 있는 XML 데이터 형식이 포함됩니다.

    동일 테이블 또는 다른 테이블

    XML 데이터 형식 열을 다른 관계형 열이 포함된 테이블이나 기본 테이블에 대한 외래 키 관계에 있는 별개의 테이블에 만들 수 있습니다.

    다음 조건 중 하나에 해당하는 경우 동일 테이블에 XML 데이터 형식 열을 만듭니다.

  • 응용 프로그램이 XML 열에서 데이터 검색을 수행하고 XML 열에 대한 XML 인덱스는 필요하지 않습니다.
  • XML 데이터 형식 열에 XML 인덱스를 작성해야 하고 기본 테이블의 기본 키가 해당 클러스터링 키와 동일합니다. 자세한 내용은 XML 데이터 형식 열 인덱싱의 섹션을 참조하십시오 다음 조건에 해당하는 경우 별개의 테이블에 XML 데이터 형식 열을 만듭니다.

  • XML 데이터 형식 열에 XML 인덱스를 작성해야 하지만 기본 테이블의 기본 키가 해당 클러스터링 키와 동일하지 않거나 기본 테이블에 기본 키가 없거나 기본 테이블이 힙(즉, 클러스터링 키가 없음)입니다. 이 경우는 기본 테이블이 이미 있는 경우에 해당할 수 있습니다.
  • 행 내부 또는 행 외부에 저장되는지 여부에 관계없이 공간을 차지하는 테이블에 있는 XML 열로 인해 테이블 스캔이 느려지지 않아야 합니다.

    XML 데이터의 세분성

    XML 열에 저장된 XML 데이터의 세분성은 잠금 및 업데이트 특성에 중요한 요소입니다. SQL Server는 XML 데이터 및 비-XML 데이터에 대해 같은 잠금 메커니즘을 사용합니다. 따라서 행 수준의 잠금을 사용하면 해당 행에 있는 모든 XML 인스턴스가 잠깁니다. 세분성이 큰 경우 큰 XML 인스턴스를 업데이트를 위해 잠글 경우 다중 사용자 시나리오에서 처리량이 줄어듭니다. 고급 업데이트 시나리오에서 동시성을 향상시키기 위해서는 XML 데이터를 하나 이상의 테이블에서 관계형 열로 분해할 수 있습니다. 이렇게 분산 수준이 높은 경우 개체 캡슐화 및 XML 데이터의 구조가 손실될 가능성이 있으며 재조합 비용이 높아집니다.

    XML 인스턴스에 대한 업데이트는 즉각적이고 증분적으로 수행됩니다. 즉, 일반적으로 전체 XML 인스턴스를 바꾸는 경우가 거의 없습니다. 따라서 단일 특성 값의 업데이트를 XML 인스턴스의 크기에 관계없이 효율적으로 처리할 수 있습니다.

    데이터 모델링 요구 사항 및 잠금 특성 간의 균형은 훌륭한 디자인을 위한 중요한 요소입니다.

    형식 없는, 형식 있는, 제한된 XML 데이터 형식

    SQL Server 2005 XML 데이터 형식은 ISO SQL-2003 표준 XML 데이터 형식을 구현합니다. 따라서 올바른 형식의 XML 1.0 문서 뿐만 아니라 텍스트 노드와 임의 개수의 형식 없는 XML 열의 최상위 요소가 포함된 XML 콘텐츠 조각도 저장할 수 있습니다. 시스템은 데이터에 대한 올바른 형식을 검사하며, 열이 XML 스키마에 바인딩될 필요가 없고, 넓은 의미에서 올바른 형식이 아닌 데이터는 거부합니다. 이러한 경우는 형식 없는 XML 변수 및 매개 변수에 대해서도 적용됩니다.

    XML 데이터를 기술하는 XML 스키마가 있는 경우 이 스키마를 XML 열과 연결하여 형식 있는 XML을 만들 수 있습니다. XML 스키마는 데이터 유효성을 검사하고, 형식 없는 XML 이외의 데이터 수정 문과 쿼리를 컴파일 하는 동안 보다 정확한 유형 검사를 수행하고, 저장소 및 쿼리 처리를 최적화하는 데 사용됩니다.

    다음 조건에 해당하는 경우 형식 없는 XML 데이터 형식을 사용합니다.

  • XML 데이터에 대한 스키마가 없습니다.
  • 스키마는 있지만 서버에서 데이터의 유효성을 검사할 필요가 없습니다. 이러한 경우는 응용 프로그램이 데이터를 서버에 저장하기 전에 클라이언트측 유효성 검사를 수행하거나, 스키마에 유효하지 않은 XML 데이터를 일시적으로 저장하거나, 서버에서 지원되지 않는 XML 스키마 기능(예:key/keyref)을 사용하는 경우에 해당합니다.

    다음 조건에 해당하는 경우 형식 있는 XML 데이터 형식을 사용합니다.

  • XML 데이터에 대한 스키마가 있고 서버에서 XML 스키마에 따라 XML 데이터의 유효성을 검사해야 합니다.
  • 유형 정보에 따라 저장소와 쿼리 최적화를 활용합니다.
  • 정적 유형 오류와 같이 쿼리 컴파일 중에 유형 정보를 활용합니다.

    형식 있는 XML 열, 매개 변수 및 변수는 선언 시에 플래그(각각 DOCUMENT 또는 CONTENT)로 지정해야 하는 XML 문서 또는 콘텐츠를 저장할 수 있습니다. 또한 하나 이상의 XML 스키마를 제공해야 합니다. 각 XML 인스턴스에 정확히 하나의 최상위 요소가 있는 경우 DOCUMENT를 지정하고 그렇지 않으면 CONTENT를 사용하십시오. 쿼리 컴파일러는 쿼리 컴파일 중에 유형 검사에 DOCUMENT 플래그를 사용하여 단일 최상위 요소를 유추합니다.

    XML 열 형식화 외에도 형식 있는 또는 형식 없는 XML 데이터 형식 열에 관계형(열 또는 행) 제약 조건을 사용할 수 있습니다. 다음 조건에 해당하는 경우 제약 조건을 사용합니다.

  • XML 스키마로 비즈니스 규칙을 표현할 수 없습니다. 예를 들어 꽃집의 위치로부터 80km 이내에 있어야 하는 꽃집의 배달지는 XML 열에 대한 제약 조건으로 작성될 수 있습니다. 이 제약 조건에는 스칼라(테이블 값에 반대됨) 사용자 정의 함수 내의 XML 데이터 형식 메서드가 포함됩니다.
  • 이러한 제약 조건에는 테이블에 있는 다른 XML 또는 비-XML 열이 포함됩니다. 이에 대한 예로는 XML 인스턴스에 있는 고객 ID(/Customer/@CustId)를 관계형 CustomerID 열의 값과 일치하도록 강제로 적용하는 경우를 들 수 있습니다.

    DTD(문서 유형 정의)

    XML 데이터 형식 열, 변수 및 매개 변수는 DTD가 아닌 XML 스키마를 사용하여 형식화할 수 있습니다. DTD는 타사 도구를 사용하여 XML 스키마 문서로 변환할 수 있으며 XML 스키마를 데이터베이스에 로드할 수 있습니다.

    형식 없는 XML 인스턴스와 형식 있는 XML 인스턴스에 대해 인라인 DTD를 사용하여 기본값을 제공하고 엔터티 참조를 해당 확장 형식으로 교체할 수 있습니다.

    XML 데이터의 내부 저장소

    사용자가 제공한 XML 데이터는 내부적으로 이진 형식으로 저장되며 XML 데이터의 텍스트 표현보다 신속하게 구문 분석할 수 있습니다. 이러한 이진 형식은 일반적인 경우 약간의 압축을 제공하며 인스턴스당 2GB로 제한됩니다. 압축의 정도는 반복되는 태그의 길이 및 수와 XML 데이터에 있는 값의 유형에 따라 달라집니다. 다음 예제에서는 저장된 XML 데이터의 크기를 계산하는 방법을 보여 줍니다.

    예제: 저장된 XML 크기 계산

    여기에서는 이 문서에 있는 대부분의 예제에 사용된 형식 없는 XML 열이 있는 테이블 문서(pk INT PRIMARY KEY, xCol XML)가 사용되며 이러한 문서는 직관적인 방식으로 형식화된 XML로 확장될 수 있습니다(형식화된 XML 사용에 대한 자세한 내용은 SQL Server 2005 온라인 설명서 참조).

    CREATE TABLE docs (pk INT PRIMARY KEY, xCol XML)

    이해를 돕기 위해 XML 데이터 인스턴스에 대한 쿼리가 다음과 같이 설명됩니다.

    INSERT INTO docs VALUES (1,
    ''


    Michael
    Howard


    David
    LeBlanc

    39.99
    '')

    XML 열에서 XML 인스턴스의 저장 크기(바이트)는 DATALENGTH() 함수를 사용하여 찾을 수 있습니다.

    SELECT DATALENGTH (xCol)
    FROM docs

    행 내부 및 행 외부 저장소

    크기가 작은 XML 데이터 형식 인스턴스는 테이블의 일부 행 내에 저장됩니다. 디스크 페이지 내에 수용할 수 없는 보다 큰 값은 16바이트의 행 내부 포인터와 함께 행 외부에 저장됩니다.

    행 내부에 XML 값을 저장하면 레코드 밀도가 줄어들고 테이블의 비-XML 열에 대한 테이블 검색 속도가 느려집니다. 이러한 경우 시스템 저장 프로시저 sp_tableoption에서 "large value types out of row" 옵션을 지정하여 모든 큰 데이터 유형을 행 외부에 저장할 수 있습니다.

    XML 데이터 형식 열 인덱싱

    XML 데이터 형식 열에서 XML 인덱스를 만들 수 있습니다. 열에 있는 XML 인스턴스에 대한 모든 태그, 값 및 경로가 인덱싱되며 쿼리 성능이 향상됩니다. 다음과 같은 경우 XML 인덱스를 사용하면 응용 프로그램에 도움이 됩니다.

  • 작업에서 XML 열에 대한 쿼리가 일반적으로 사용됩니다. 데이터 수정 중의 XML 인덱스 유지 관리 비용을 고려해야 합니다.
  • XML 값이 비교적 크고 검색된 부분은 비교적 작습니다. 인덱스를 만들면 런타임시 전체 데이터의 구문 분석을 방지하고 효율적인 쿼리 처리를 위해 인덱스 조회 기능을 활용할 수 있습니다.

    XML 열에서 첫 번째 인덱스는 "기본 XML 인덱스"입니다. 이를 사용하여 XML 열에서 세 가지 유형의 보조 XML 인덱스를 만들면 아래에 설명된 대로 일반적인 쿼리 속도를 향상시킬 수 있습니다.

    기본 XML 인덱스

    이 인덱스는 XML 열의 XML 인스턴스 내에 있는 모든 태그, 값 및 경로를 인덱싱합니다. 기준 테이블(즉, XML 열이 있는 테이블)에는 테이블의 기본 키에 클러스터형 인덱스가 있어야 하며 기본 키는 기준 테이블의 행과 인덱스 행의 상관 관계를 지정하는 데 사용됩니다. 전체 XML 인스턴스는 XML 열로부터 검색됩니다(예: SELECT *). 쿼리에는 기본 XML 인덱스가 사용되며, 이 인덱스를 사용하여 스칼라 값 또는 XML 하위 트리를 반환합니다.

    예제: 기본 XML 인덱스 만들기

    다음 문에서는 테이블 문서의 XML 열 xCol에 idx_xCol이라는 기본 XML 인덱스를 만듭니다.

    CREATE PRIMARY XML INDEX idx_xCol on docs (xCol)

    보조 XML 인덱스


    기본 XML 인덱스를 만든 다음에는 보조 XML 인덱스를 만들어서 작업 내 여러 종류의 쿼리 속도를 높일 수 있습니다. 보조 XML 인덱스의 세 가지 유형인 PATH, PROPERTY 및 VALUE를 사용하면 각각 경로 기반 쿼리, 사용자 지정 속성 관리 시나리오 및 값 기반 쿼리에 큰 이점으로 작용합니다.

    PATH 인덱스는 열의 모든 XML 인스턴스에 대해 문서 순서에 있는 각 XML 노드의 경로 및 값 쌍에 B+-트리를 작성합니다. PROPERTY 인덱스는 각 XML 인스턴스 내의 PK, 경로 및 값 쌍에 클러스터된 B+-트리를 만들고, 여기서 PK는 기준 테이블의 기본 키입니다. 마지막으로 VALUE 인덱스는 열의 모든 XML 인스턴스에 대해 문서 순서에 있는 각 노드의 경로 및 값 쌍에 B+-트리를 만듭니다.

    다음은 이러한 인덱스를 하나 이상 만들기 위한 일부 지침입니다.


  • 작업에서 주로 XML 열에 대한 경로 식이 사용되는 경우 PATH 보조 XML 인덱스를 사용하면 작업 속도가 높아질 수 있습니다. 가장 일반적인 경우는 Transact-SQL의 WHERE 절에 있는 XML 열의 exist() 메서드를 사용하는 것입니다.
  • 작업에서 경로 식을 사용하여 개별 XML 인스턴스로부터 여러 값을 검색하는 경우 PROPERTY 인덱스의 각 XML 인스턴스 내에서 경로를 클러스터하는 것이 도움이 될 수 있습니다. 이 시나리오는 일반적으로 개체의 속성이 인출되고 해당 관계형 기본 키 값이 알려진 속성 모음 시나리오에서 발생합니다.
  • 작업이 XML 인스턴스 내의 값에 대한 쿼리를 포함하고 이러한 값이 포함된 요소 또는 특성 이름을 알 수 없는 경우 VALUE 인덱스를 만들 수 있습니다. 이 경우는 일반적으로 요소는 계층의 임의 수준에서 발생할 수 있고 검색 값(“Howard”)은 경로보다 선택적인 //author[last-name="Howard"]와 같은 하위 항목 축 조회에서 발생합니다. 또한 쿼리에서 “novel”이라는 값이 포함된 일부 특성의 요소를 조회하는 /book [@* = "novel"]과 같은 “와일드카드” 쿼리에서 발생합니다.

    예제: 경로 기반 조회

    아래 쿼리가 작업에서 일반적으로 사용된다고 가정해 보십시오.

    SELECT pk, xCol
    FROM docs
    WHERE xCol.exist (''/book[@genre = "security"]'') = 1

    경로 식 /book/@genre와 값 "security"는 PATH 인덱스의 키 필드에 해당합니다. 따라서 PATH 유형의 보조 XML 인덱스는 이 작업에 도움이 됩니다.

    CREATE XML INDEX idx_xCol_Path on docs (xCol)
    USING XML INDEX idx_xCol FOR PATH

    예제: 개체의 속성 인출

    테이블 문서의 각 행에서 책 저자의 이름을 검색하는 다음 쿼리를 보십시오.

    SELECT ref.value (''first-name'', ''nvarchar(64)''),
    ref.value (''last-name'', ''nvarchar(64)'')
    FROM docs CROSS APPLY xCol.nodes (''/book/author) R(ref)

    이 경우 속성 인덱스가 유용하고 다음과 같이 생성됩니다.

    CREATE XML INDEX idx_xCol_Property on docs (xCol)
    USING XML INDEX idx_xCol FOR PROPERTY

    예제: 값 기반 쿼리

    다음 쿼리에서 부분 경로는 //를 사용하여 지정되므로 ISBN 값 기반의 조회 시에는 VALUE 인덱스를 사용하는 것이 유용합니다.

    SELECT xCol
    FROM docs
    WHERE xCol.exist (''//book/@ISBN[. = "0-7356-1588-2"]'') = 1

    VALUE 인덱스는 다음과 같이 생성됩니다.

    CREATE XML INDEX idx_xCol_Value on docs (xCol)
    USING XML INDEX idx_xCol FOR VALUE

    여러 파일 그룹의 XML 인덱스

    XML 인덱스는 기준 테이블과 결합되어 XML 인덱스 행이 해당 기준 테이블 행과 동일한 파일 그룹 및 테이블 파티션에 저장됩니다. 이를 위해서는 XML 블롭에 대한 큰 파일 그룹과 결합된 해당 XML 인덱스가 필요할 수 있습니다. CREATE TABLE 문의 TEXTIMAGE_ON 사양은 지정된 파일 그룹에 XML 블롭을 저장하고 XML 인덱스 행은 계속 기준 테이블과 결합되며, 큰 XML 노드 값은 XML 블롭과 동일한 파일 그룹에 존재합니다. 이렇게 하면 개별 파일 그룹의 크기를 줄이고 데이터를 보다 편리하게 관리할 수 있습니다. 예를 들어 행에 있는 비-XML 데이터가 XML 데이터 크기에 비해 작은 경우 이 기술을 사용하면 저장소를 보다 균등하게 분산할 수 있습니다.

    XML 열의 전체 텍스트 인덱스

    XML 열에 전체 텍스트 인덱스를 만들 수 있습니다. 이렇게 하면 XML 태그를 무시하면서 XML 값의 콘텐츠를 인덱싱합니다. 특성 값은 태그의 일부로 간주되기 때문에 전체 텍스트 인덱싱되지 않으며 요소 태그는 토큰 경계로 사용됩니다. 일부 시나리오에서는 XML 인덱스 사용과 전체 텍스트 검색을 조합할 수 있습니다.

  • SQL 전체 텍스트 검색을 사용하여 필요한 XML 값을 필터링합니다.
  • XML 열에서 XML 인덱스를 사용하는 XML 인스턴스를 쿼리합니다.

    예제: 전체 텍스트 검색과 XML 쿼리 조합

    XML 열에 전체 텍스트 인덱스를 만드는 단계는 다른 SQL 유형 열에 전체 텍스트 인덱스를 만드는 단계와 동일합니다. DDL 문은 다음과 같으며, 여기서 PK__docs__023D5A04는 테이블의 단일 열 기본 키 인덱스입니다.

    CREATE FULLTEXT CATALOG ft AS DEFAULT
    CREATE FULLTEXT INDEX ON dbo.docs (xCol) KEY INDEX PK__docs__023D5A04

    XML 열에서 전체 텍스트 인덱스를 만든 후 다음 쿼리는 XML 인스턴스에 "Secure"라는 단어가 책 제목에 포함되어 있는지 검사합니다.

    SELECT *
    FROM docs
    WHERE CONTAINS(xCol,''Secure'')
    AND xCol.exist(''/book/title/text()[contains(.,"Secure")]'') =1

    CONTAINS() 메서드는 전체 텍스트 인덱스를 사용하여 문서 내 어느 곳에든 "Secure"라는 단어가 포함된 XML 인스턴스를 분리합니다. exist() 절은 "Secure"라는 단어가 책 제목에 있는지 보장합니다.

    CONTAINS() 및 XQuery contains()를 사용한 전체 텍스트 검색은 서로 다른 의미를 갖고 있습니다. 후자는 하위 문자열 일치 검사이며, 전자는 형태소 분석을 사용한 토큰 일치 검사입니다. 따라서 제목에서 "run"이라는 문자열을 검색하는 경우 "run", "runs" 및 "running"은 모두 전체 텍스트 CONTAINS()와 XQuery contains()에 만족하기 때문에 이 검색에 포함됩니다. 하지만 위 쿼리에서 제목에 있는 "UnSecured"라는 단어는 검색되지 않습니다(전체 텍스트 CONTAINS()는 실패하지만 XQuery contains()에는 만족). 또한 전체 텍스트 검색은 단어의 형태소 분석을 사용하지만 XQuery contains()는 문자열 검색을 수행합니다. 일반적으로 완전한 하위 문자열 검색의 경우 전체 텍스트 CONTAINS() 절을 제거해야 합니다. 이러한 차이점은 다음 예제에서 설명합니다.

    예제: 형태소 분석을 사용한 XML 값의 전체 텍스트 검색

    예제: XML 쿼리와 전체 텍스트 검색 조합에서의 XQuery contains() 검사는 일반적으로 제거할 수 없습니다. 다음 쿼리를 보십시오.

    SELECT *
    FROM docs
    WHERE CONTAINS(xCol,''run'')

    문서에서 "ran"이라는 단어는 형태소 분석 덕분에 검색 조건과 일치합니다. 또한 검색 컨텍스트는 XQuery를 사용하여 검사되지 않습니다.

    AXSD를 사용하여 전체 텍스트 인덱싱된 관계형 열로 XML을 분산할 경우 XML 뷰에 대한 XPath 쿼리는 기본 테이블에서 전체 텍스트 검색을 수행하지 않습니다.

    XML 열에 대한 전체 텍스트 인덱스에서 여러 언어 지원

    전체 열에 대해 하나의 단어 분리기만 포함할 수 있는 nvarchar 또는 varchar 열과 달리 XML 데이터 형식 열은 XML 요소에 대한 xml:lang 특성을 사용하여 여러 언어의 단어 분리기를 지원합니다. 지정된 언어의 단어 분리기는 해당 요소의 콘텐츠에서 사용됩니다. 하위 요소는 xml:lang 특성에 다른 언어를 지정할 수 있습니다. 따라서 여러 XML 인스턴스 뿐만 아니라 단일 XML 인스턴스에도 여러 단어 분리기가 포함될 수 있습니다.

    이를 통해 여러 가지 흥미 있는 가능성이 도출됩니다. 예를 들어 Word 2003 문서에는 여러 언어로 된 섹션이 포함될 수 있습니다. WordML XML 표현의 문서를 XML 데이터 형식 열로 저장할 수 있으며 전체 텍스트 인덱싱에 적합한 언어 단어 분리기를 사용할 수 있습니다.

    전체 텍스트 쿼리는 다음 예제에서와 같이 사용할 언어를 지정할 수 있습니다.

    예제: 전체 텍스트 검색의 언어 지정

    다음 쿼리는 전체 텍스트 검색이 독일어로 수행되도록 지정합니다.

    SELECT * FROM docs
    WHERE contains (xCol, ''Visionen'', LANGUAGE ''German'')

    속성 승격

    쿼리가 주로 작은 수의 요소 및 특성 값에 대해 만들어진 경우(예: 고객 ID로 고객 찾기, 즉 /Customer/@CustId 값이 지정된 경우) 이러한 값을 관계형 열로 승격할 수 있습니다. 이러한 방식은 전체 XML 인스턴스가 검색되는 동안 XML의 작은 부분에 대해서 쿼리가 실행되는 경우에 유용합니다. XML 열에 대한 XML 인덱스 생성까지는 필요하지 않으며 대신 승격된 열을 인덱싱할 수 있습니다. 쿼리는 승격된 열을 사용하도록 작성되어야 합니다. 즉, 쿼리 최적화 프로그램에서 XML 열의 쿼리를 승격된 열로 다시 대상화하지 않습니다.

    승격된 열은 같은 테이블이나 별개의 테이블의 계산된 열이거나 테이블에 있는 사용자 유지 관리 열일 수 있습니다. 이러한 방식은 단일 값(즉, 단일 값 속성)이 각 XML 인스턴스로부터 승격되는 경우에 적합합니다. 하지만 다중 값 속성의 경우 아래에 설명된 대로 속성에 대한 별개의 테이블을 만들어야 합니다.

    XML 데이터 형식 기반 계산된 열

    XML 데이터 형식 메서드를 호출하는 UDF(사용자 정의 함수)를 사용하여 계산된 열을 만들 수 있습니다. 계산된 열 유형은 XML을 포함한 임의의 SQL 유형일 수 있습니다. 이에 대해서는 다음 예제에서 설명합니다.

    예제: XML 데이터 형식 메서드 기반 계산된 열

    책의 ISBN에 대한 사용자 정의 함수를 만듭니다

    CREATE FUNCTION udf_get_book_ISBN (@xData xml)
    RETURNS varchar(20)
    BEGIN
    DECLARE @ISBN varchar(20)
    SELECT @ISBN = @xData.value(''/book[1]/@ISBN'', ''varchar(20)'')
    RETURN @ISBN
    END

    ISBN에 대한 테이블에 계산된 열을 추가합니다.

    ALTER TABLE docs
    ADD ISBN AS dbo.udf_get_book_ISBN(xCol)

    계산된 열은 일반적인 방식으로 인덱싱할 수 있습니다.

    예제: XML 데이터 형식 메서드 기반 계산된 열에 대한 쿼리

    ISBN이 0-7356-1588-2인 을 가져오기 위해 XML 열에 대한 다음 쿼리

    SELECT pk, xCol
    FROM docs
    WHERE xCol.exist (''/book[@ISBN = "0-7356-1588-2"]'') = 1

    이는 다음과 같이 계산된 열을 사용하도록 다시 작성될 수 있습니다.

    SELECT pk, xCol
    FROM docs
    WHERE ISBN = ''0-7356-1588-2''

    사용자 정의 함수를 만들어서 XML 데이터 형식을 반환하고 UDF를 사용하여 계산된 열을 만들 수 있습니다. 하지만 XML 계산된 열에 대해서는 XML 인덱스를 만들 수 없습니다.

    속성 테이블 만들기

    XML 데이터로부터 일부 다중 값 속성을 하나 이상의 테이블로 승격시키고, 해당 테이블에서 인덱스를 만들고, 이를 사용하도록 쿼리를 다시 대상화할 수 있습니다. 일반적인 시나리오는 적은 수의 속성으로 대부분의 쿼리 작업을 포괄하는 것입니다. 다음과 같이 할 수 있습니다.
    • 다중 값 속성을 유지하는 하나 이상의 테이블을 만듭니다. 테이블 당 하나의 속성을 저장하고 기준 테이블과의 백 조인을 위해 속성 테이블에서 기준 테이블의 기본 키를 복제하는 것이 편리합니다.
    • 속성의 상대적 순서를 유지하려면 상대적 순서에 대한 별개의 열을 사용해야 합니다.
    • 속성 테이블을 유지하기 위해 XML 열에 트리거를 만듭니다. 트리거 내에서 다음 중 하나를 수행하십시오.
      . nodes() 및 value()와 같은 XML 데이터 형식 메서드를 사용하여 속성 테이블의 행을 삽입하고 삭제합니다. nodes() 메서드에 대한 자세한 내용은 Value(), nodes() 및 OpenXML() 섹션을 참조하십시오.
      . CLR에서 스트리밍 테이블 값 함수를 만들어서 속성 테이블의 행을 삽입하고 삭제합니다.

    • 속성 테이블에 대한 SQL 액세스와 기준 테이블의 XML 열에 대한 XML 액세스를 위한 쿼리를 작성하고 기본 키를 사용하는 테이블 간 조인을 포함시킵니다.

    예제: 속성 테이블 만들기

    저자의 이름을 승격시키는 경우를 가정해 보십시오. 책에는 한 명 이상의 저자가 있으므로 이름은 다중 값 속성입니다. 각 이름은 속성 테이블의 별개의 행에 저장됩니다. 기준 테이블의 기본 키는 백 조인을 위해 속성 테이블에 중복됩니다.

    CREATE TABLE tblPropAuthor (propPK int, propAuthor varchar(max))

    예제: XML 인스턴스로부터 행 집합을 생성하기 위해 사용자 정의 함수 만들기

    아래의 테이블 값 사용자 정의 함수 udf_XML2Table은 기본 키 값과 XML 인스턴스를 받아들입니다. 이 함수는 요소의 모든 저자에 대한 이름을 검색하고 기본 키 및 이름 쌍이 포함된 행 집합을 반환합니다. 래퍼 사용자 정의 함수를 사용하지 않고 XML 데이터 형식 메서드 기반의 계산된 열을 인덱싱하는 방식은 SQL Server 2005에서 지원되지 않습니다.

    CREATE FUNCTION udf_XML2Table (@pk int, @xCol xml)
    RETURNS table WITH SCHEMABINDING
    AS RETURN(
    select @pk as PropPK, nref.value(''.'', ''varchar(max)'') as propAuthor
    from @xCol.nodes(''/book/author/first-name'') R(nref)
    )

    예제: 속성 테이블을 채우기 위해 트리거 만들기

    Insert 트리거: 속성 테이블에 행을 삽입합니다.

    CREATE TRIGGER trg_docs_INS on docs FOR INSERT
    AS
    BEGIN
    insert into tblPropAuthor
    select p.*
    from inserted as I CROSS APPLY
    dbo.udf_XML2Table(I.pk, I.xCol) as P
    END

    Delete 트리거: 삭제되는 행의 기본 키 값에 따라 속성 테이블에서 행을 삭제합니다.

    create trigger trg_docs_DEL on docs for delete
    as
    begin
    delete tblPropAuthor where propPK IN
    (select p.PropPK
    from deleted as D CROSS APPLY
    dbo.udf_XML2Table(D.pk, D.xCol) as P
    )
    end

    Update 트리거: 업데이트된 XML 인스턴스에 따라 속성 테이블에서 기존 행을 삭제하고 속성 테이블에 새 행을 삽입합니다.

    create trigger trg_docs_UPD
    on docs
    for update
    as
    if update(xCol) or update(pk)
    begin
    delete tblPropAuthor where propPK IN
    (select p.PropPK
    from deleted as D CROSS APPLY
    dbo.udf_XML2Table(D.pk, D.xCol) as P
    )
    insert into tblPropAuthor
    select p.*
    from inserted as I CROSS APPLY
    dbo.udf_XML2Table(i.pk, i.xCol) as P
    end

    예제: 저자의 이름이 "David"인 XML 인스턴스 찾기

    쿼리를 XML 열에 표현할 수 있습니다. 또는 아래와 같이 "David"라는 이름을 속성 테이블에서 검색하고 기준 테이블로 백 조인을 수행하여 XML 인스턴스를 반환할 수 있습니다.

    SELECT xCol
    FROM docs JOIN tblPropAuthor ON docs.pk = tblPropAuthor.propPK
    WHERE tblPropAuthor.propAuthor = ''David''

    예제: CLR 스트리밍 테이블 값 함수를 사용한 솔루션

    이 솔루션은 다음과 같은 단계로 구성됩니다.

    1. IEnumerator를 구현하고 XML 인스턴스에 간단한 경로 식을 사용하여 스트리밍 테이블 값 출력을 생성하기 위한 InitMethod 메서드가 포함된 CLR 클래스 CXmlStreamingTVF를 정의합니다.

    2. 어셈블리와 Transact-SQL UDF(사용자 정의 함수)를 만들어서 CLR 클래스를 호출합니다.

    3. UDF를 사용하여 삽입, 업데이트 및 삭제 트리거를 정의하여 속성 테이블을 유지 관리합니다.

    먼저 아래와 같이 스트리밍 CLR 함수를 만듭니다. XML 데이터 형식은 ADO.NET에서 관리 클래스 SqlXml로 제공되며 XmlReader를 반환하는 메서드 CreateReader()를 지원합니다.

    using System;
    using System.Xml;
    using System.IO;
    using System.Data;
    using System.Data.Sql;
    using System.Data.SqlClient;
    using System.Data.SqlTypes;
    using Microsoft.SqlServer.Server;
    using System.Collections;

    public class CXmlStreamingTVF : IEnumerator {
    private XmlReader m_reader;
    private SqlXml m_doc;
    private string m_name;
    private string[] m_path;
    private int m_pathLoc;

    public CXmlStreamingTVF (SqlXml doc, string simplePath) {
    m_doc = doc;
    m_reader = m_doc.CreateReader();
    m_path = simplePath.Split(new char[]{''/''});
    m_pathLoc = m_path.Length-1;
    }

    //Three IEnumerator methods.
    //Custom code for Navigating the document for a simple path.
    public bool MoveNext () {
    bool new_row = false;
    while (!new_row && !m_reader.EOF) {
    m_reader.Read();
    if (m_reader.LocalName==m_path[m_pathLoc] &&
    m_pathLoc==m_path.Length-1 &&
    m_reader.NodeType==XmlNodeType.Element) {
    m_name = m_reader.ReadString();
    new_row = true;
    }
    else if (m_reader.LocalName==m_path[m_pathLoc] &&
    m_reader.NodeType==XmlNodeType.Element &&
    m_reader.IsEmptyElement==false) {
    if (m_pathLoc==1 && m_reader.Depth!=0)
    continue;
    m_pathLoc++;
    }
    else if (m_pathLoc!=1 &&
    m_reader.LocalName==m_path[m_pathLoc-1] &&
    m_reader.NodeType==XmlNodeType.EndElement) {
    m_pathLoc--;
    }
    }
    return new_row;
    }

    public object Current { get { return this; } }
    public void Reset () {
    m_reader.Close();
    m_reader = m_doc.CreateReader();
    }

    [SqlFunctionAttribute (FillRowMethodName="CLROpenXml")]
    public static IEnumerator InitMethod (SqlXml doc, string simplePath)
    {
    return new CXmlStreamingTVF(doc, simplePath);
    }

    public static void CLROpenXml(Object obj, out string name) {
    CXmlStreamingTVF stream = (CXmlStreamingTVF) obj;
    name = stream.m_name;
    }
    }

    그런 다음 어셈블리 및 CLR 메서드 InitMethod()에 해당하는 Transact-SQL 사용자 정의 함수 SQL_streaming_xml_tvf를 만듭니다.

    CREATE ASSEMBLY CLRXML
    FROM ''C:\temp\StreamingTVF.dll''
    WITH PERMISSION_SET = SAFE

    CREATE FUNCTION SQL_streaming_xml_tvf (
    @xData XML, @xPath nvarchar(max))
    RETURNS table (FirstName nvarchar(max))
    AS
    EXTERNAL NAME [CLRXML].[CXmlStreamingTVF].[InitMethod]

    UDF는 행 집합 생성을 위해 테이블 값 함수 CLR_udf_XML2Table을 정의하는 데 사용됩니다.

    create function CLR_udf_XML2Table (@pk int, @xCol xml)
    returns @ret_Table table (FK int, FirstName varchar(max))
    with schemabinding
    as
    begin
    insert into @ret_Table
    select @pk, FirstName
    FROM SQL_streaming_xml_tvf (@xCol, ''/book/author/first-name'')
    return
    end

    마지막으로 CLR_udf_XML2Table replacing udf_XML2Table 함수로 "속성 테이블을 채우기 위한 트리거 만들기" 예제에서 표시된 대로 트리거를 정의합니다. 그러면 삽입 트리거가 다음과 같이 됩니다.

    create trigger CLR_trg_docs_INS on docs for insert
    as
    begin
    insert into tblPropAuthor
    select p.*
    from inserted as I CROSS APPLY
    dbo.CLR_udf_XML2Table(I.pk, I.xCol) as P
    end

    삭제 및 업데이트 트리거는 비-CLR 함수와 비슷하며 단순히 udf_XML2Table() 함수를 CLR_udf_XML2Table() 함수로 교체하면 얻을 수 있습니다.

    이러한 두 대안의 장단점

    속성 테이블에 행을 생성, 삭제 및 수정하는 데 사용된 함수 udf_XML2Table()이 CPU 사용량이 높은 경우 CLR 기반 접근 방식이 일반적으로 더 빠릅니다. 여기에는 매우 복잡한 구조의 XML 데이터가 포함되어 XML 구문 분석의 계산 비용이 높습니다. udf_XML2Table() 함수의 비용이 낮은 경우에는 차이점이 줄어듭니다. 크기가 작은 XML과 간단한 경로 식의 경우 컨텍스트 변환 비용은 CLR 기반 솔루션에 더욱 나쁜 영향을 줄 수 있습니다.

    Transact-SQL 및 XQuery 기반 솔루션과는 달리 CLR 기반 솔루션의 경로 식은 하드 코딩됩니다. 이러한 방식은 경로 식이 미리 알려져 있는 경우 제대로 작동합니다. 그 외 다른 모든 경우에는 Transact-SQL 및 XQuery 기반 솔루션이 유일한 방법입니다.

    XML 스키마 컬렉션

    XML 스키마 컬렉션은 관계형 스키마 범위에 포함되는 메타데이터 엔터티이며 를 통해 관련되거나 관련되지 않은 하나 이상의 XML 스키마가 포함됩니다. XML 스키마 컬렉션 내의 개별 XML 스키마는 해당 대상 네임스페이스를 사용하여 식별됩니다.

    XML 스키마 컬렉션은 CREATE XML SCHEMA COLLECTION 구문을 사용하여 생성되며 하나 이상의 XML 스키마를 제공합니다. 기존 스키마에 보다 많은 XML 스키마 구성 요소를 추가할 수 있으며 ALTER XML SCHEMA COLLECTION 구문을 사용하여 XML 스키마 컬렉션에 더 많은 스키마를 추가할 수 있습니다. XML 스키마 컬렉션은 SQL Server 2005의 보안 모델을 사용하여 모든 SQL 개체와 같은 방식으로 보안됩니다.

    다중 유형 열

    XML 스키마 컬렉션 C는 다중 XML 스키마에 따라 XML 열 xCol을 형식화합니다. 또한 DOCUMENT 또는 CONTENT 플래그는 XML 트리 또는 조각이 각각 xCol 열에 저장될 수 있는지 여부를 지정합니다.

    DOCUMENT의 경우 각 XML 인스턴스는 인스턴스의 유효성을 검사하고 형식 있는 해당 최상위 요소에 대한 대상 네임스페이스를 인스턴스에서 지정합니다. 반대로 CONTENT의 경우에는 각 최상위 요소가 대상 네임스페이스 중 하나를 C에서 지정할 수 있습니다. XML 인스턴스는 인스턴스에서 발생하는 모든 대상 네임스페이스에 따라 유효성이 검사되고 형식화됩니다.

    스키마 발전

    XML 스키마 컬렉션은 XML 열, 변수 및 매개 변수를 형식화하는 데 사용됩니다. XML 스키마 컬렉션은 XML 스키마 발전을 위한 메커니즘을 제공합니다. 대상 네임스페이스가 BOOK-V1인 XML 스키마를 XML 스키마 컬렉션 C에 추가한다고 가정해 보십시오. C를 사용하여 형식 있는 XML 열 xCol은 BOOK-V1 스키마를 준수하는 XML 데이터를 저장할 수 있습니다.

    응용 프로그램에서 복잡한 유형의 정의 및 최상위 요소 선언과 같은 새로운 스키마 구성 요소로 XML 스키마를 확장한다고 가정해 보십시오. 이러한 새 스키마 구성 요소를 BOOK-V1 스키마에 추가할 수 있으며 이 구성 요소에는 xCol 열에 있는 기존 XML에 대한 유효성 검사를 다시 수행할 필요가 없습니다.

    나중에 응용 프로그램에서 대상 네임스페이스 BOOK-V2를 선택하도록 XML 스키마의 새 버전을 제공한다고 가정해 보십시오. 이 XML 스키마를 C에 추가할 수 있습니다. XML 열은 BOOK-V1 및 BOOK-V2의 인스턴스를 모두 저장할 수 있으며 이러한 네임스페이스를 준수하는 XML 인스턴스에 있는 쿼리 및 데이터 수정을 실행합니다.

    와일드카드 섹션에 허용되지 않는 Lax 유효성 검사

    XML 스키마 프로세서는 와일드 카드 섹션(xs:any 및 xs:anyAttribute) 및 xs:anyType에서 lax 유효성 검사를 지원하지 않습니다. 와일드카드 섹션의 경우 XML 스키마는 processContents = "strict" 또는 processContents = "skip"을 지정할 수 있습니다. xs:anyType의 경우 엄격한 유효성 검사만 지원됩니다.

    엄격한 유효성 검사는 이러한 스키마 구성 요소를 인스턴스화하는 XML 노드와 관련된 보다 정확한 유형 정보가 유효성 검사 중에 알려지고 쿼리 컴파일 중에 사용되도록 보장합니다. 건너뛰기 의미는 형식화 정보가 손실되고 해당 노드는 형식 없는 상태로 취급됩니다(요소의 경우는 xdt:untyped 및 특성의 경우는 xdt:untypedAtomic).

    xs:anyType에 대한 건너뛰기 의미가 필요한 경우 아래와 같이 xs:any 및 processContents = "skip"이 포함된 xs:anyAttribute가 사용되는 새로운 복합 유형을 사용하십시오.






    xs:datetime, xs:date 및 xs:time 사용

    xs:datetime, xs:data 및 xs:time 유형의 값은 ISO 8601 형식으로 지정되어야 하며 표준 시간대가 포함되어야 합니다. 그렇지 않으면 이러한 값에 대한 데이터 유효성 검사가 실패합니다. 따라서 2005-05-27T14:11:00.943Z는 xs:datetime 유형에 대한 올바른 값이지만 2005-05-27 14:11:00.943Z는 날짜 및 시간 구분자인 "T"가 없고, 2005-05-27T14:11:00.943은 표준 시간대가 없고, 2005-05-27 14:11:00.943은 시간 구분자와 표준 시간대가 없어서 올바른 값이 아닙니다. 이와 비슷하게 2005-05-27Z는 올바른 xs:date 값이지만 2005-05-27은 표준 시간대가 지정되지 않아서 올바른 값이 아닙니다.

    형식 없는 XML 데이터에는 응용 프로그램이 SQL 유형의 dateTime 또는 smallDateTime으로 변환하려는 날짜, 시간 및 날짜/시간 값이 포함될 수 있습니다. 이러한 날짜, 시간 및 날짜/시간 값은 ISO 8601 형식을 준수하지 않거나 표준 시간대를 포함하지 않을 수 있습니다. 이와 비슷하게 형식 있는 XML에는 xs:date, xs:time 및 xs:dateTime 이외의 유형의 값(예: xs:string)이 포함될 수 있습니다. 두 경우 모두 값을 먼저 [n]varchar로 변환한 후 다음 예제에서와 같이 SQL datetime 또는 smalldatetime으로 변환해야 합니다.

    예제: 형식 없는 XML에서 날짜/시간 값 추출

    다음 데이터로부터 CreationTime 특성의 값을 가져오기 위해

    declare @var xml
    select @var =
    ''
    LastExecutionTime="2005-05-19 14:11:00.943"
    CreationTime="2005-05-19 14:11:00.913"/>




    ''

    value() 메서드가 사용되어 이후에 SQL datetime 유형으로 캐스트된 nvarchar(64) 값을 검색합니다.

    select cast (@var.value(
    ''(/QueryExecutionStats /GeneralStats/@CreationTime)[1]'',
    ''nvarchar(max)'') AS datetime) as creation_time

    사용법

    XML 데이터 로드

    SQL Server 2000에서 SQL Server 2005로 XML 데이터 전송
    XML 데이터는 여러 가지 방법으로 SQL Server 2005로 전송할 수 있습니다. 여기에서는 이에 대한 일부 옵션을 다룹니다.
  • 데이터가 SQL Server 2000 데이터베이스의 [n]text 또는 이미지 열에 있는 경우 DTS 등을 사용하여 테이블을 SQL Server 2005 데이터베이스로 가져옵니다. 열 유형을 각각 [n]varchar(max) 또는 varbinary(max)로 바꾼 다음 ALTER TABLE 문을 사용하여 XML로 바꿉니다.
  • bcp out을 사용하여 SQL Server 2000의 데이터를 대량 복사하고 bcp in을 사용하여 SQL Server 2005 데이터베이스로 대량 삽입합니다.
  • SQL Server 2000 데이터베이스의 관계형 열에 데이터가 있는 경우 [n]text 열로 테이블을 새로 만들고 필요에 따라 행 식별자에 대한 기본 키 열을 만듭니다. 클라이언트측 프로그래밍을 사용하여 서버에서 FOR XML로 생성된 XML을 검색하고 이를 [n]text 열에 기록합니다. 그런 다음 위에 언급한 기술을 사용하여 데이터를 SQL Server 2005 데이터베이스로 전송합니다. SQL Server 2005 데이터베이스의 XML 열로 XML을 직접 기록하도록 선택할 수도 있습니다.

    예제: 열 유형을 XML로 변경


    테이블 R에 있는 [n]text, [n]varchar, varbinary 또는 XML 열 XYZ를 XML 스키마 컬렉션 bookCollection을 사용하여 형식 있는 XML로 바꾼다고 가정해 보십시오. 다음 문은 이러한 유형 변환을 수행합니다.

    ALTER TABLE R ALTER COLUMN XYZ XML (bookCollection)

    XML 스키마 컬렉션이 지정되지 않은 경우 대상은 형식 없는 XML입니다.


    텍스트 인코딩


    SQL Server 2005는 XML 데이터를 유니코드(UTF-16)로 저장합니다. 서버에서 검색된 XML 데이터는 UTF-16 인코딩으로 되고 데이터 검색 시 다른 인코딩이 필요한 경우 응용 프로그램에서 검색된 UTF-16 데이터에 대해 필요한 변환을 수행해야 합니다.

    문자열 유형을 XML 데이터 형식으로 변환할 경우 SQL Server 2005는 원본 문자열의 데이터 정렬에 대한 코드 페이지를 사용하여 인코딩을 결정합니다. XML 인코딩 정보가 XML 선언(예: <?xml version="1.0" encoding="windows-1256"?>)에 있는 "encoding" 특성을 사용하여 지정된 경우 인코딩은 문자열의 코드 페이지와 호환되어야 합니다. 문자열 데이터는 이러한 두 데이터 정렬이 호환되는 한 XML 파서에서 제대로 구문 분석될 수 있습니다. 그렇지 않으면 오류가 발생하거나 잘못된 데이터가 로드됩니다. 클라이언트 응용 프로그램이 XML 데이터 형식으로의 변환을 위해 서버에 문자열 값을 보낼 때에도 같은 동작이 발생합니다.

    일부 경우에는 여러 인코딩의 XML 데이터가 있거나 인코딩에 대한 사전 지식이 없을 수도 있습니다. 이러한 경우의 권장 방법은 XML 데이터를 이진 데이터 형식(예: varbinary(max))으로 제공하는 것입니다. 서버는 데이터 스트림(0xFFFE는 UTF-16을 나타냄)의 바이트 순서 표시 또는 XML 선언으로부터(있는 경우) 인코딩을 파생합니다. 그 결과 XML 매개 변수에서 XML 인코딩 불일치를 피하기 위한 가장 쉬운 방법은 클라이언트로부터 데이터를 네이티브 XML(ADO.NET의 SqlXml 클래스 사용) 또는 이진 유형으로 보내거나 [var]binary 데이터 형식을 서버에서 XML로 변환하는 것입니다.

    이러한 규칙을 요약하면 다음과 같습니다.


  • 텍스트 XML이 유니코드(UCS-2, UTF-16)인 경우 이를 XML 열, 변수 또는 매개 변수로 할당해도 아무 문제가 발생하지 않습니다.
  • 인코딩이 유니코드가 아니고 원본 코드 페이지로 인해 내재적인 경우 데이터베이스의 문자열 코드 페이지는 로드하려는(필요한 경우 COLLATE 사용) 코드 포인트와 같거나 호환되어야 합니다. 이러한 서버 코드 페이지가 없으면 명시적 XML 선언을 추가하여 적합한 인코딩을 지정해야 합니다.
  • 명시적 인코딩을 사용하려면 코드 페이지와 상호 작용이 없는 varbinary 유형을 사용하거나 적합한 코드 페이지의 문자열 유형을 사용합니다. 그런 다음 데이터를 XML 열, 변수 또는 매개 변수로 할당합니다.

    그래서 UTF-8로 전달하려는 경우 varbinary(max)로 전달하는 것이 가장 안전합니다. UTF-16 데이터는 바이트 순서 표시가 필요하지 않은 nvarchar(max)로 전달하거나 UTF-16 인코딩을 표시하도록 처음 두 바이트로 바이트 순서 표시가 0xFFFE인 varbinary(max)로 전달할 수 있습니다.


    XML 데이터 대량 로드


    SQL Server의 대량 로드 기능인 BCP, OPENROWSET 및 BULK INSERT를 사용하여 XML 데이터를 서버로 대량 로드할 수 있습니다. OPENROWSET을 사용하면 데이터를 파일에서 XML 열로 로드할 수 있습니다. 다음 예제에서는 이러한 점에 대해 설명합니다.


    예제: 파일로부터 XML 로드


    이 예제에서는 행을 테이블 문서에 삽입하는 방법을 보여 줍니다. XML 열의 값은 C:\temp\xmlfile.xml 파일로부터 이진 LOB(BLOB)로 로드되고 pk 열에 값 10이 제공됩니다. 파일은 CLOB나 NCLOB 대신 BLOB으로 로드되어 XML 문서가 인코딩되는 모든 인코딩을 수용합니다.

    INSERT INTO docs
    SELECT 10, xCol
    FROM (SELECT *
    FROM OPENROWSET (BULK ''C:\temp\xmlfile.xml'', SINGLE_BLOB)
    AS xCol) AS R(xCol)


    비-이진 데이터 정렬


    XML 데이터 형식에 사용되는 XML 데이터 정렬은 이진 데이터 정렬이며 대/소문자를 구분합니다(유니코드 코드 포인트 데이터 정렬). 응용 프로그램은 대/소문자 구분 검색과 같은 서로 다른 요구 사항을 갖고 있습니다. 이러한 목표는 적합한 문자열 값을 적합한 데이터 정렬과 함께 varchar 유형의 계산된 열로 승격함으로써 달성할 수 있습니다. 데이터 정렬 종속 작업에 대한 계산 열을 쿼리합니다. 또한 XML 열에 독일어 및 중국어 데이터 문자열이 들어 있다고 가정합니다. 이러한 각 데이터 정렬에 관련된 작업을 각 언어별로 하나씩 두개의 계산된 열에서 사용할 수 있습니다.


    XQuery 및 유형 유추


    Transact-SQL에 포함된 XQuery(http://www.w3.org/TR/xquery/ (영문))는 XML 데이터 형식 쿼리를 위해 지원되는 언어입니다. 이 언어는 Microsoft를 비롯한 주요 데이터베이스 공급업체의 참여로 W3C(World Wide Web Consortium)에서 개발 중에 있습니다(현재 마지막 협의 중). 여기에는 탐색 언어로 XPath 2.0이 포함됩니다. 데이터 수정을 위한 언어 구성은 XML 데이터 형식에서도 사용할 수 있습니다. SQL Server 2005에서 지원되는 XQuery 구성, 함수 및 연산자에 대한 정보는 온라인 설명서를 참조하십시오.


    오류 모델


    컴파일 오류는 의미상 잘못된 XQuery 식 및 XML DML 문으로부터 반환됩니다. 컴파일 단계에서는 XQuery 식 및 DML 문의 정적 유형이 올바른지 여부를 검사하고 형식 있는 XML에 대한 유형 유추를 위해 XML 스키마를 사용합니다. 여기에서는 식이 유형 안전도 위반으로 인해 런타임에 식이 실패할 수 있는 경우 정적 유형 오류를 발생시킵니다. 정적 오류의 예로는 정수에 문자열 추가와 형식 있는 데이터에 대해 존재하지 않는 노드의 쿼리를 들 수 있습니다.

    W3C 표준과는 달리 XQuery 런타임 오류는 빈 시퀀스로 변환되며 호출 컨텍스트에 따라 쿼리 결과에 빈 XML 또는 NULL로 채워질 수 있습니다.

    적합한 유형에 대한 명시적 형변환을 통해 사용자는 런타임 캐스트 오류가 빈 시퀀스로 변환되더라도 정적 오류와 관련된 문제를 해결할 수 있습니다.

    다음 하위 섹션에서는 유형 검사에 대해 자세히 설명합니다.


    단일 검사


    단일 항목이 필요한 위치 단계, 함수 매개 변수 및 연산자(예: eq)는 컴파일러에서 단일 항목이 런타임에 보장되는지 확인할 수 없는 경우 오류를 반환합니다. 문제는 형식 없는 데이터에서 자주 발생하며 형식 있는 데이터의 경우에도 일부 문제가 발생합니다. 예를 들어 특성 조회를 위해서는 단일 부모 요소가 필요하며 단일 부모 노드의 순서별 선택이 적합합니다. 특성 값 추출을 위한 nodes()-value() 조합에 대한 평가(Value(), nodes() 및 OpenXML() 참조)에는 다음 예제에서와 같이 nodes() 메서드가 단일 컨텍스트 항목을 제공하기 때문에 순서 사양이 필요하지 않습니다.


    예제: 알려진 단일 항목


    이 예제에서 nodes() 메서드는 각 요소에 대한 별개의 행을 생성합니다. nodes() 메서드에 대한 자세한 내용은 Value(), nodes() 및 OpenXML() 섹션을 참조하십시오. 노드에서 평가된 value() 메서드는 특성으로서 단일 항목인 @genre의 값을 추출합니다.

    SELECT nref.value(''@genre'', ''varchar(max)'') Genre
    FROM docs CROSS APPLY xCol.nodes(''//book'') AS R(nref)

    XML 스키마는 형식 있는 XML의 유형 검사에 사용됩니다. 노드가 XML 스키마에서 단일 항목으로 지정된 경우 컴파일러는 이 정보를 사용하고 오류가 발생하지 않습니다. 그렇지 않으면 순서별 단일 노드 선택이 필요합니다. 특히 /book//title과 같은 하위 항목 축을 사용하면 XML 스키마에 지정된 경우에도

    출처명: 한국마이크로소프트

  • 728x90

    SQL Server 2005에서 XML 데이터 형식을 위한 성능 최적화


    Shankar Pal, Babu Krishnaswamy, Vasili Zolotov, Leo Giakoumakis _ Microsoft Corporation


    적용 대상:
    SQL Server 2005

    요약: 이 문서에서는 Microsoft SQL Server 2005에서 XML 데이터 형식의 쿼리 및 데이터 수정 성능을 향상시키기 위한 몇 가지 방법을 설명합니다. 이 문서를 최대한 활용하기 위해서는 SQL Server 2005의 XML 기능에 익숙해야 합니다. 배경 자료로 MSDN 기사 Microsoft SQL Server 2005에서 XML 지원Microsoft SQL Server 2005를 위한 최상의 XML 사용 방법을 참조하십시오.


    소개


    엔터프라이즈 응용 프로그램은 반구조적 데이터 및 구조화되지 않은 데이터 모델링에 XML을 점점 더 많이 사용하고 있습니다. Microsoft SQL Server 2005는 이러한 응용 프로그램 개발을 돕기 위해 XML 데이터 처리를 위한 광범위한 지원을 제공합니다. XML 데이터는 XML 데이터 형식 열에 원시적으로 저장되어, XML 스키마의 모음에 따라 형식화되거나 형식화되지 않은 상태로 남아 있을 수 있습니다. 그리고 Last Call 및 XML 데이터 조작 언어에서 현재 부상하고 있는 W3C 권장 사항인 XQuery를 통해 세분화된 데이터 조작이 지원됩니다. 쿼리 성능을 향상시키기 위해 XML 열을 인덱스할 수 있습니다. 엔터프라이즈 응용 프로그램은 반구조적 데이터 및 구조화되지 않은 데이터를 모델링하기 위해 점점 더 많이 XML을 사용하고 있으므로 SQL Server 2005의 XML 지원을 통해 이점을 얻게 될 것입니다.

    이 문서에서는 XML 데이터 형식을 사용하는 응용 프로그램의 저장소, 쿼리 및 데이터 수정을 최적화하기 위한 제안을 제공합니다. 이러한 제안은 코드 샘플을 통해 설명됩니다. XML 데이터 모델링 및 사용을 위한 최상의 실행 방법에 관한 설명은 관련 MSDN 기사 Microsoft SQL Server 2005를 위한 최상의 XML 사용 방법을 참조하십시오. 또한 매핑을 사용하는 XML 뷰 기술의 최적화에 관한 내용은 MSDN Library에서 SQLXML 성능 최적화 (영문)를 참조하십시오.

    이 문서에서는 우선, 데이터베이스 설계 원리를 포함하여 XML을 사용한 데이터 모델링 지침을 살펴본 다음 응용 프로그램의 성능 최적화를 위한 쿼리 및 데이터 수정 지침을 제공합니다.


    XML 데이터 형식을 이용한 데이터 모델링


    XML 데이터 형식은 기업 내의 반구조적 데이터 및 구조화되지 않은 데이터에 데이터 모델링 기능을 제공합니다. XML 저장소 및 쿼리 처리의 성능은 데이터베이스 스키마 설계에 좌우되며 XML 열에서 XML 데이터 및 속성 승격의 구조 및 단위와 같은 요소를 포함합니다.

    맨 처음 내려야 할 결정은 응용 프로그램에 XML 데이터 모델의 기능이 필요한지 여부입니다. 구조화된 데이터는 관계형으로 가장 잘 모델링되고 관계형 열을 가진 테이블에 저장됩니다. 문서 순서 및 포함 계층을 유지해야 하고 재귀 구조를 가진 반구조적 데이터 또는 태그 데이터를 사용하는 경우 XML 데이터 모델이 가장 적합합니다.

    XML 데이터 형식 열에 구조화된 데이터를 저장하면 유용한 경우가 종종 있는데, 예를 들면 데이터가 유연한 구조를 갖거나 구조가 사전에 알려져 있지 않은 경우입니다.

    이런 시나리오는 개체에 대한 메타 데이터 정보가 XML로 모델링되고 XML 데이터 형식 열에 저장되는 경우 속성 관리에서 발생합니다. 다른 구조 및 콘텐츠 모델을 사용하는 서로 다른 형식의 개체 속성이 같은 XML 열에 저장되고 서로 쿼리될 수 있습니다. 가장 자주 쿼리되는 속성은 동일한 테이블 또는 다른 테이블의 열로 승격됩니다. 승격된 속성을 인덱싱하고 쿼리할 수 있으며 쿼리 계획은 XML 열을 쿼리하는 것보다 더 단순합니다.

    또는 들어오는 XML 데이터는 테이블로 분해되어 SQL 언어를 사용하여 쿼리될 수 있습니다. XML 생성이 쿼리 작업 부하의 중요한 부분인 경우 XML 데이터 형식 열에 XML 데이터의 중복된 복사본을 저장하는 것이 유용할 수 있습니다. 중복된 복사본은 XML 생성의 런타임 비용을 방지합니다.

    XML 데이터 형식을 이용한 데이터 모델링에는 절대적인 규칙이 없습니다. 각 모델링 상황에서 장점과 단점을 신중하게 심사숙고해야 합니다. 그리고 형식화된 XML 열과 형식화되지 않은 XML 열 중에서의 선택 및 XML 태그가 데이터에 도입되는 방법도 마찬가지로 중요합니다. 이 섹션의 나머지 부분에 이에 대한 고려 사항과 기타 고려 사항이 논의되어 있습니다.


    XML 데이터의 구조

    동일한 데이터를 서로 다른 방식(예: 요소 중심, 특성 중심, 요소와 속성의 결합)으로 표시할 수 있습니다. 이 선택은 콘텐츠를 구성하는 것(요소 값) 및 메타 정보를 구성하는 것(특성 값)의 인식, 그리고 태그의 카디널리티(예: 요소의 다중 발생)에 의해 결정됩니다. 한 가지 방식으로 반구조적 데이터 및 구조화되지 않은 데이터에 XML 태그를 도입하는 것은 다른 저장 및 쿼리 처리 방법에 비해 더 효과적일 수 있습니다.


    구체적인 태그 사용

    일반적인 요소 이름을 사용하고 추가 특성을 이용하여 서로 다른 요소 형식들을 구별하는 것이 편리한 경우가 종종 있습니다. 하지만 이 방법을 이용하면 XML 인덱스 조회를 효율적으로 수행할 수 없기 때문에 이 방법은 쿼리에서 잘 작동하지 않습니다. (XML 인덱싱에 관한 자세한 설명은 XML 데이터 인덱싱을 참조하십시오.)

    한편 의미적으로 풍부한 구체적인 요소 이름은 더 읽기 쉽고 더 효과적인 쿼리 계획을 생성하는 데 도움이 되는 태그를 제공합니다. 반면 매우 장황한 태그는 저장소 비용도 증가시킵니다. 다음 예제는 이 두 가지 측면을 보여줍니다.


    예제: 일반적 태그와 구체적 태그의 비교

    도서 및 DVD 정보에 XML 태그를 사용하기를 원한다고 가정해 봅시다. 한 가지 선택은, 두 가지 항목 형식을 구별하기 위해 두 개의 값 "book"과 "DVD" 중 하나를 갖는 @type 특성을 가진 <item>이라는 일반 요소를 사용하는 것입니다. 도서 및 DVD는 다음과 같이 표시될 수 있습니다.


    <item type="book"><title>Writing Secure Code</title></item>
    <item type="DVD"><title>The Godfather</title></item>


    도서 및 DVD에 대한 경로 식은 각각 /item[@type = "book"] 및 /item[@type = "DVD"]로 작성될 수 있습니다. 한편 다음과 같이 <book> 및 <DVD> 는 더 직접적인 XML 태그입니다.


    <book><title>Writing Secure Code</title></book>
    <DVD><title>The Godfather</title></DVD>


    이 표시는 더 간단한 경로 식 /book/DVD를 제공합니다. 또한 @type 특성에서 술어가 제거되기 때문에 쿼리 계획도 더 간단하고 효과적입니다. 게다가 이 표시를 이용하면 형식화되지 않은 XML의 경우에, 주 XML 인덱스(XML 데이터 인덱싱에 관한 자세한 내용은 XML 데이터 인덱싱 참조)에 있는 행의 수가 4개( <item>, 에 한 행, @type 및 그 값에 한 행, <title> 에 한 행, 제목 값에 한 행)에서 3개( <book> 또는 <DVD>, 에 한 행, <title> 에 한 행, 제목 값에 한 행)로 줄어듭니다. 이로 인해 3개에서 2개 행으로 저장소 오버헤드가 감소되며 이는 상당한 절감입니다.


    특성 중심 태그

    특성의 값은 형식화된 XML 및 형식화되지 않은 XML 둘 다에 대한 주 XML 인덱스의 단일 행에 특성 태그와 함께 저장됩니다. 비교해 보면, 형식화되지 않은 XML의 단순한 값 요소의 값은 요소 태그와 별개의 행에 저장됩니다. 따라서 형식화되지 않은 XML 내의 특성 값을 사용함으로써 저장소가 더 적게 필요합니다.

    더구나 특성의 값이 주 XML 인덱스에 있는 태그로서 동일한 행에서 구해지기 때문에 술어의 평가가 더 효과적이므로, 값의 또 다른 행에 액세스할 필요가 없습니다. 이 내용은 다음 예제에 예시되어 있습니다.


    예제: 특성 중심 태그

    위 예제에서는 다음과 같이 제목이 요소 대신 특성으로 모델링될 수 있습니다


    <book title="Writing Secure Code"/>
    <DVD title="The Godfather"/>


    형식화되지 않은 XML의 경우, 이 방식을 이용하면 주 XML 인덱스에 있는 행의 수를 3개(<book>, <title>에 각각 한 행씩, 제목 값에 한 행)에서 2개(<book>에 한 행, @title 특성에 한 행)로 줄일 수 있습니다. DVD의 경우에도 유사합니다.

    경로 식 /DVD[title = "The Godfather"]는 제목이 제목에 대한 요소 중심 태그가 있는 "The Godfather"인 DVD를 찾습니다. 특성 중심 태그의 경우에는 동일한 쿼리가 /DVD[@title = "The Godfather"]로 작성되고 쿼리에 필요한 JOIN 수가 하나 줄어듭니다.


    형식화되거나 형식화되지 않은 XML

    형식화되지 않은XML(즉, XML 데이터가 XML 스키마에 의해 설명되지 않음)의 요소 및 특성 값은 내부적으로 유니코드 문자열로 저장됩니다. 형식화되지 않은XML에서 작업하는 경우에는 데이터를 적합한 형식으로 변환해야 합니다. 예를 들어, 경로 식 (/book/price)[1] > 19.99 가 평가될 때 <price> 의 문자열 값이 숫자 비교를 위해 십진수로 변환됩니다. 이와 같은 비교가 많으면 비용이 많이 들게 됩니다. XML 스키마가 제공하는 형식 정보는 여러 방식으로 데이터베이스 엔진에 의해 사용됩니다. 삽입 및 업데이트된 XML 데이터는 XML 스키마를 준수하는지 검증된 다음 이진 표시("XML blob")로 저장됩니다. 요소 및 특성 값은 XML 인스턴스 내에 형식화된 값으로 저장됩니다. 이렇게 하면 XML blob이 상응하는 텍스트 형식보다 더 효율적으로 구문 분석될 수 있습니다. 형식화된 값은 XML 인덱스에 저장되며 데이터 변환이 제거될 때마다 인덱스 사용을 허용합니다. 쿼리 컴파일은 형식 정보를 사용하여 XQuery 식 및 데이터 수정 문의 정적 형식 정확성을 검사합니다. 형식 불일치 오류는 컴파일 시에 탐지되며 명시적 형식 캐스트를 사용함으로써 피할 수 있습니다.

    또한 형식 추론에 기반한 쿼리 최적화가 수행됩니다(예: <book> 의 <price> 가 xs:decimal 형식인 경우, (/book/price)[1] 의 xs:decimal로의 변환이 제거됩니다). 이는 XML 인덱스 조회에 긍정적인 효과를 줄 수 있습니다. (/book/price)[1] < 19.99와 같은 범위 술어는 VALUE 형식의 보조 XML 인덱스에 범위 스캔을 수행합니다. (XML 데이터 인덱싱에 관한 자세한 내용은 이 문서의 XML 데이터 인덱싱 XML 데이터 인덱싱을 참조하십시오.) 형식화되지 않은 XML에 필요한 데이터 변환은 이러한 범위 스캔을 방지합니다. 또한 XML 스키마가 단일 <price> 요소를 지정하고 각 XML 인스턴스에서 단일 <book> 요소만을 허용하는 경우에는(/book/price)[1]의 서수 [1]이 필요하지 않습니다. 형식화된 XML에는 XML 데이터 삽입 및 수정 동안 유효성 검사가 필요합니다. 유효성 검사의 비용은 결코 사소하지 않으며 스키마 정의의 복잡성 및 XML 데이터에서 발생하는 태그의 수와 같은 요소에 따라 다릅니다.

    속성 승격

    쿼리 처리 동안 문서 순서 및 포함 계층과 같은 구조 정보가 XML 인스턴스에 보존됩니다. 따라서 쿼리 계획이 복잡해지는 경향이 있습니다. 스칼라 값을 XML 열에서 같은 테이블이나 다른 테이블의 관계형 열로 승격하고 이 열에 대해 직접적으로 쿼리를 작성함으로써 일부 쿼리에 대한 계획이 단순화될 수 있습니다. 승격된 속성은 인덱스할 수 있습니다. 속성 값을 구체화하고 인덱싱하면, 미리 계산된 값이 쿼리 성능을 높이는 방식과 같은 방식으로 XML 열에서 XQuery를 사용할 때보다 성능이 더 좋아집니다.

    속성 값을 검색하거나 속성 값을 필터로 사용하여 해당 XML blob을 검색하는 경우 속성 승격은 성능을 향상시킵니다. 후자의 경우 속성 값의 선택성이 중요한 요소입니다.

    단일값 속성은 계산 열과 동일한 테이블의 열로 승격할 수 있습니다. 단일값 속성 및 다중 값 속성은 둘 다 다른 테이블의 열로 승격할 수 있고 트리거를 사용하여 유지 관리할 수 있습니다. 아래에 이 두 가지 속성 승격 방법이 설명되어 있습니다.


    계산 열 사용

    XML 데이터 형식 메서드를 사용하여 스칼라 값을 추출하기 위해 먼저 Transact-SQL 사용자 정의 함수가 생성됩니다. 그런 다음 사용자 정의 함수에서 정의한 계산 열이 테이블에 추가됩니다. 각각의 승격된 속성에 대해 이 두 단계가 반복되고 필요에 따라 관계형 인덱스가 이들 열에 생성됩니다.

    XML 열에 대한 XQuery 식을 계산 열을 사용하는 SQL 문으로 다시 작성해야 하며, XML 인스턴스가 일치하는 행에서 검색됩니다. 쿼리 비용을 기준으로 쿼리 최적화 프로그램이 계산 열의 인덱스를 선택합니다. 계산 열은 미리 계산되므로, 승격된 속성은 XML 열을 직접 쿼리하는 것보다 더 빠른 성능을 낳습니다.

    열이 SELECT 목록에서만 사용되고 술어 평가에 사용되지 않는 경우 계산 열의 인덱싱을 피할 수 있습니다. 이 경우 성능상의 이점을 위해 계산 열의 지속성만으로도 충분합니다. 계산 열이 인덱스될 때, 계산 열 식이 정확하지 않거나 명확하지 않은 경우 계산 열이 계속 유지되어야 합니다.

    아래 예제는 속성 승격을 위한 계산 열의 사용을 보여줍니다.


    예제: 속성 승격을 위한 계산 열 사용

    ISBN을 계산 열로 승격하는 것이 시간과 노력을 들일 만한 일이 되도록, 지정된 ISBN에 따라 책을 조회하는 일반적인 작업 부하를 가정해 봅시다. 다음과 같이 ISBN을 검색하는 사용자 정의 함수를 정의합니다.


    CREATE FUNCTION udf_get_book_ISBN (@xData xml) RETURNS varchar(20)
    WITH SCHEMABINDING
    BEGIN
    RETURN @xData.value('(/book/@ISBN)[1]', 'varchar(20)')
    END


    ISBN을 위해 계산 열을 docs 테이블에 추가합니다.


    CREATE TABLE docs (id int PRIMARY KEY, xCol XML)
    ALTER TABLE docs ADD ISBN AS dbo.udf_get_book_ISBN(xCol)


    ISBN 열에 클러스터되지 않은 인덱스를 만듭니다.


    CREATE INDEX COMPUTED_IDX ON docs (ISBN)


    아래 쿼리를


    SELECT xCol
    FROM docs
    WHERE xCol.exist ('/book/@ISBN[. = "0-2016-3361-2"]') = 1


    계산 열을 사용하기 위해 다음과 같이 다시 작성합니다.


    SELECT xCol
    FROM docs
    WHERE ISBN = '0-2016-3361-2'


    ISBN 값의 추출이 미리 처리되어 있기 때문에 다시 작성한 쿼리는 더 간단한 쿼리 계획을 생성합니다.


    속성 테이블 사용

    별도의 속성 테이블은 유지 관리를 위해 삽입, 삭제 및 업데이트 트리거 설정이 필요합니다. 이 테이블은 속성 테이블의 각 행이 속성 값(피벗되지 않은 표시)을 포함하고 있는 경우의 다중값 속성에 적합합니다. 속성 테이블의 생성 및 유지 관리를 보여주는 예제를 관련 MSDN 기사 Microsoft SQL Server 2005를 위한 최상의 XML 사용 방법에서 찾을 수 있습니다.

    형제 항목의 관련 순서가 응용 프로그램에 중요한 경우 속성 테이블에 시퀀스 번호 열이 요구됩니다. 하지만 이로 인해, XML 하위 트리 삽입 및 제거의 경우 속성 테이블 유지 관리가 복잡해집니다.

    편의상 단일값 속성 열을 테이블에 추가할 수 있습니다. 이렇게 하면 열에서 중복이 발생하지만 두 속성이 모두 필요한 경우 JOIN이 제거됩니다.

    승격된 속성의 최대 카디널리티 N이 작고 사전에 알려진 경우, 별도의 속성 테이블 대신 N개의 계산 열을 생성하고 쿼리 프로세서가 이러한 열을 유지 관리하게 하는 것이 편리할 것입니다.


    XML 데이터 대량 로드


    SQL Server의 대량 로드 기능을 사용하여 XML 데이터를 XML 데이터 형식 열에 대량 로드할 수 있습니다. 여기에는 BCP IN, BULK INSERT 및 OPENROWSET 메서드가 포함됩니다.

    BCP 입력은 가능한 경우 XML 데이터의 중간 복사본을 회피하도록 최적화되었습니다. 따라서 XML 열에 행 또는 열 제약 조건이 없는 경우 BCP가 세 개의 대체 방법들 중에서 최상의 성능을 갖습니다.


    OpenRowset 사용

    OPENROWSET는 파일에서 XML 데이터를 XML 열, 변수 및 매개 변수로 로드하는 편리한 방법입니다. 변수 또는 매개 변수에서 XML 데이터를 여러 번 쿼리하면 파일에서 같은 횟수만큼 데이터를 가져올 수 있습니다. 아래 예제에서와 같이 XML 데이터를 XML 변수로 한 번 읽어 들여 이를 여러 번 쿼리하는 것이 더 낫습니다.


    예제: OPENROWSET의 출력 쿼리

    다음 쿼리에서 XML 데이터는 파일에서 테이블 식 XmlFile의 [Contents] 열로 읽혀 들어갑니다. nodes() 메서드는 XML 인스턴스에서 <author> 요소를 찾습니다. 각 value() 메서드는 파일에서 XML 데이터를 매번 로드하는, <author> 요소에 관련된 경로 식을 평가합니다.


    WITH XmlFile ([Contents]) AS (
    SELECT CONVERT (XML, [BulkColumn])
    FROM OPENROWSET (BULK N'C:\Filedata.xml', SINGLE_BLOB) AS [XmlData]
    )
    SELECT nref.value('first-name[1]', 'nvarchar(32)') FirstName,
    nref.value('last-name[1]', 'nvarchar(32)') LastName
    FROM [XmlFile] CROSS APPLY [Contents].nodes('//author') AS p(nref)


    다시 작성된 아래 쿼리에 나타난 대로 성능 향상을 위해 파일 데이터를 한 번만 로드하면 됩니다. 즉, 파일 내용이 XML 변수 @xmlData로 한 번만 읽혀 들어 가고 SELECT 문에서 다시 사용됩니다.


    DECLARE @xmlData XML;
    SELECT @xmlData = CONVERT (XML, [BulkColumn])
    FROM OPENROWSET (BULK N'C:\Filedata.xml', SINGLE_BLOB) AS [XmlData];

    SELECT nref.value('first-name[1]', 'nvarchar(32)') FirstName,
    nref.value('last-name[1]', 'nvarchar(32)') LastName
    FROM @xmlData.nodes ('//author') AS p(nref)


    XML 데이터 인덱싱


    XML 인덱스

    XML 열로의 세분화된 쿼리의 경우 XML 열에 주 XML 인덱스를 만드는 것이 좋습니다. 주 XML 인덱스는 형식화된 XML 열 및 형식화되지 않은 XML 열 모두에서 생성될 수 있고 전체 XML 열 내의 모든 경로 및 값을 인덱스합니다. 주 XML 인덱스는 XML 열에 XML 인스턴스의 분할된(shredded) 표시를 기준으로 B+트리를 만듭니다. XML 열에 XML blob뿐만 아니라 이 B+트리가 만들어지고 그 크기는 XML 열의 XML blob을 모두 합친 크기보다 더 큽니다. B+트리는 XML 데이터 형식 메서드를 이용하여 XML 데이터를 쿼리하는 데 사용됩니다. XML blob은 전체 XML blobSELECT * FROM docs와 같은 기본 테이블에서 검색되는 경우를 최적화하는 데 사용됩니다. 이렇게 하면 더 작은 크기와 직렬화 비용 덕분에 주 XML 인덱스에서 XML 콘텐츠를 직렬화할 때보다 더 빨라집니다.

    보조 XML 인덱스는 쿼리 최적화 프로그램이 더 나은 계획을 제안하도록 추가 옵션을 제공합니다. 응용 프로그램은 PATH, PROPERTY, VALUE 형식의 보조 XML 인덱스를 사용함으로써 성능이 보다 더 향상될 수 있습니다.

  • PATH 인덱스는 XML 데이터 형식에서 /book[@ISBN = "0-2016-3361-2"]와 같은 경로 식이 발생하는 경우에 항상 유용합니다. 긴 경로 식일수록 그 이점은 더 큽니다. PATH 인덱스는 전반적으로 상당한 속도 증가를 제공합니다.
  • PROPERTY 인덱스는 XML 인스턴스의 여러 속성이 SELECT 문 내에서 검색되는 경우에 유용합니다. 각 XML 인스턴스의 속성을 함께 클러스터링하면 성능이 보다 더 향상될 수 있습니다.

  • VALUE 인덱스는 하위 항목 축(예: //-operator) 및 와일드카드(예: /book[@* = "novel"])를 포함하는 경로 식에 유용합니다. 하나 이상의 보조 XML 인덱스가 도움이 되는지 여부를 결정하기 위해서는 쿼리 작업 부하의 분석이 필요합니다. 또한 XML 데이터 인덱스의 전체적인 혜택을 측정하는 데 인덱스 유지 관리 비용을 고려해야 합니다.

    대부분의 응용 프로그램은 예상되는 쿼리 작업 부하를 알고 있으며 쿼리에서 발생하는 경로만을 인덱싱하여 이점을 얻을 수 있습니다. 이 경로는 이 문서의 후반부 "속성 승격"에 설명된 대로 속성으로 승격될 수 있습니다.

    부분적 XML 업데이트

    XML 데이터 형식의 인플레이스 업데이트는 세분화된 데이터 수정 동안 상당한 성능 향상을 제공합니다. 새 상태(데이터 수정 후) 및 이전 상태(데이터 수정 전) 간의 차이점이 처리되고 XML 열 저장소를 비롯하여 주 XML 인덱스에 적용됩니다. 또한 주 XML 인덱스의 변경 사항이 보조 XML 인덱스에도 전파됩니다. 이렇게 하면 저장소에서 업데이트되는 데이터의 양이 더 적고 그에 따라 트랜잭션 로그가 절감되므로 성능 혜택을 얻을 수 있습니다. 대부분의 경우 이러한 절감은 새 상태 및 이전 상태를 비교하는 비용을 상쇄합니다.

    이 경우에 가장 적합한 시나리오는 XML DML에서 명령문의 "값 대체"를 이용한 특성 또는 요소 값의 수정입니다. 이렇게 하려면 XML 열에 있는 각각의 주 XML 인덱스 및 보조 XML 인덱스에서 행을 하나씩 업데이트해야 합니다. 또한 이 업데이트는 업데이트된 특성 또는 요소를 포함하는 XML blob의 디스크에 있는 페이지에 로컬입니다. 물론 이전 값을 큰 값으로 대체하면 새 디스크 페이지가 기록됩니다. 다음은 업데이트가 매우 효율적인 경우의 예제입니다.


    예제: 특성 값 업데이트

    이 예제에 나타난 대로 <book> 의 <price> 수정은 XML 인스턴스 및 XML 인덱스의 인플레이스 업데이트를 수행합니다.


    UPDATE docs
    SET xCol.modify ('replace value of (/book/price/text())[1] with 29.99')


    특성, 요소 또는 하위 트리 삽입의 경우, 새로 삽입된 노드 및 이 노드를 따르는 형제 항목이 해당 하위 트리와 함께 업데이트되거나 삽입됩니다. XML blob에서도 이와 비슷한 변경이 발생합니다. 노드 삭제의 경우에도 이와 유사하며 삭제 지점 위의 형제 항목이 업데이트됩니다.

    최악의 시나리오는 노드를 XML 데이터 형식 인스턴스의 가장 왼쪽 조각으로서 삽입하거나 루트 요소의 가장 왼쪽 자식(child)을 삽입하는 동안 발생합니다. 이렇게 하면 전체 XML 인스턴스가 업데이트됩니다. 이 상황은 노드를 XML 인스턴스의 가장 오른쪽 조각 또는 루트 요소의 가장 오른쪽 자식(child)으로 삽입함으로써 피할 수 있습니다.

    루트 요소의 가장 왼쪽 조각 또는 가장 왼쪽 자식(child)의 삭제에도 이와 비슷한 비용이 듭니다. 요소가 자주 삽입되고 삭제되는 경우에는 요소를 가장 오른쪽 조각 또는 루트 요소의 가장 오른쪽 자식(child)으로 삽입하는 편이 더 낫습니다. 다음 예제는 비용이 많이 드는 경우를 보여줍니다.


    예제: 비용이 많이 드는 업데이트

    <publisher> 요소가 <book> 요소의 가장 왼쪽 자식(child)으로 삽입되어 <book> 의 모든 하위 요소가 업데이트됩니다.


    UPDATE docs
    SET xCol.modify ('
    insert <publisher>Microsoft Press</publisher>
    before (/book/title)[1]')


    <publisher> 를 <book> 의 가장 오른쪽 자식(child)으로 삽입하면 더 효율적입니다.


    UPDATE docs
    SET xCol.modify ('
    insert <publisher>Microsoft Press</publisher> into (/book)[1]')


    XML 스키마 제약 조건은 삽입 지점을 결정할 수 있고 새 노드를 가장 오른쪽의 가능한 위치에 삽입하면 최상의 성능을 얻을 수 있습니다.


    형식의 결합으로 인한 최적화 저해

    암시적 캐스트를 요구하는 union 형식의 값은, 보조 XML 인덱스가 경로를 일치시키는 데 사용될 수 있는 경우에도 값에 대한 보조 XML 인덱스의 조회를 막습니다. 이와 같이 union 형식의 값은 범위 스캔이 VALUE 보조 XML 인덱스에서 발생하지 못하게 합니다. 자세한 내용은 이 문서의 "범위 제약 조건"을 참조하십시오. 같은 추론이 <xs:anyAttribute>에도 적용됩니다.

    모델 그룹(<xs:choice> 및 <xs:all> ), 대체 그룹 및 와일드카드 섹션(xs:any)은 컨텐츠 모델로서 형식의 결합을 갖습니다. 정확한 형식이 쿼리 컴파일 및 최적화 동안 알려지지 않는 경우 런타임 형식 캐스트가 그 값에 대해 작업하기 위해 필요할 수 있습니다. 이렇게 하면 쿼리 속도가 느려집니다. 따라서 성능상의 이유로 가능한 경우 이러한 XML 스키마 구조 및 데이터 형식을 피해야 합니다.

    요소의 단일 발생을 나타내는 스키마 구조를 사용하면 쿼리 최적화에 도움이 됩니다. 이러한 이유로 <xs:choice> 구조가 선택적 요소가 있는 <sequence> 에 비해 선호됩니다.


    XML 인덱스 선택 비활성화

    XML 인덱스가 제약 조건을 평가하기 전 또는 후에 수정되도록 쿼리 최적화 프로그램이 보장하지 않기 때문에 XML 인덱스 선택은 check 제약 조건에서 비활성화됩니다. 이 문서의 성능 지침을 따라 제약 조건이 XML blob 상에서 효율적으로 평가될 수 있도록 하기 위해 충분한 주의를 기울여야 합니다. 뿐만 아니라 XML 인덱스 선택은 CHECK OPTION이 있는 뷰에서 비활성화됩니다.


    XML 열의 전체 텍스트 인덱스

    XML 열의 XML 인덱스와는 독립적으로 이 열에 전체 텍스트 인덱스를 만들 수 있습니다. 전체 텍스트 인덱스는 요소 콘텐츠를 인덱싱하고 XML 태그 및 특성 값을 무시하며 태그를 토큰 경계로 사용합니다.

    XQuery 함수 fn:contains()가 리터럴, 부분 문자열 일치의 의미론을 갖는 반면 CONTAINS()를 사용하는 전체 텍스트 검색은 형태소 분석을 이용한 토큰 일치를 사용합니다. 따라서 이들의 의미론은 상이합니다. 차이점을 예로 들어 보자면, 단어 "data"를 검색하면 XQuery에서는 단어 "database"와 일치하지만 전체 텍스트 의미론에서는 일치하지 반면, 단어 "drove"를 검색하면 전체 텍스트 의미론에서는 단어 "driving"과 일치하지만 XQuery에서는 일치하지 않습니다. 게다가 전체 텍스트 검색은 특성 값 검색에 사용할 수 없고, 한편 XQuery 식은 혼합 콘텐츠를 검색하기 위해 집계 함수 fn:string()을 사용해야 합니다.

    전체 텍스트 인덱스가 XML 열에 존재하는 경우 다음 작업을 수행하는 것이 좋습니다.

  • 전체 텍스트 검색을 사용하여 관심 있는 XML 값을 필터링합니다.
  • 선택한 XML 인스턴스를 XML 데이터 형식 메서드를 사용하여 쿼리합니다. 이 단계 동안 XML 열의 XML 인덱스가 사용됩니다. 이렇기 때문에 전체 텍스트 인덱스 및 XML 인덱스를 모두 사용하게 됩니다. 전체 텍스트 검색에서 검색 단어 또는 구의 높은 선택성은 XQuery 검색을 위한 추가 처리 범위를 기본 테이블에 있는 비교적 적은 행의 수로 좁혀줍니다. 이로 인해 쿼리의 속도가 상당히 빨라질 수 있습니다. 이 접근 방법은 검색 구가 키워드 경계와 일치하는 어간으로 이루어진 경우에 사용할 수 있습니다.

    예제: XQuery 일치와 전체 텍스트 결합

    다음 쿼리는 키워드 'data'에 대한 전체 텍스트 검색을 수행하고 단어 "data"가 <book>의 <title>요소의 컨텍스트에서 나타나는지 확인합니다. 이 쿼리는 전체 텍스트 contains() 메서드를 사용하여 검색 단어를 포함하고 있는 XML 인스턴스를 찾습니다. 즉, XML 데이터 형식 메서드 exist()는 XML 인스턴스가 올바른 컨텍스트에서 부분 문자열을 포함하는지 확인합니다.


    select *
    from docs
    where contains(xCol, 'data')
    AND xCol.exist('/book/title/text()[contains(.,"data")]') = 1


    예제: 전체 텍스트에서 접두사 검색 사용

    전체 텍스트 인덱스에서 접두사 검색을 수행할 수 있습니다. "database"와 같은 "data"로 시작하는 모든 키워드와 일치하는 쿼리에 대해, 위 쿼리는 다음과 같이 다시 작성될 수 있습니다. XQuery 검색은 "database"와도 일치합니다.


    select *
    from docs
    where contains(xCol, '"data*"')
    and xCol.exist('/book/title/text()[contains(.,"data")]') = 1


    전체 텍스트 contains() 메서드에서 큰따옴표의 사용에 주의하십시오.


    스냅샷 격리 및 XML 인덱스

    XML 데이터 수정은 이전 XML 인스턴스를 새 XML 인스턴스로 업데이트합니다. 이러한 변경은 주 XML 인덱스 및 보조 XML 인덱스에 전파됩니다. 기본 테이블 및 XML 인덱스에서 수정된 행은 잠겨지고 행 및 페이지 잠금이 쿼리 분석기의 결정에 따라 테이블 잠금으로 에스컬레이션될 수 있습니다. 특히 작업 부하에서 수정이 잦은 경우에는 잠금 에스컬레이션으로 인해 동시성이 나빠집니다.

    SQL Server 2005에서 스냅샷 기반 격리는 "스냅샷"이라는 새로운 격리 수준과 새로운 read-committed 격리 수준의 구현을 도입했습니다. 이에 대한 자세한 내용은 SQL Server 온라인 설명서에서 찾아볼 수 있습니다. 이들은 데이터베이스를 스냅샷 격리에 사용할 수 있는 경우 판독기와 작성기 사이의 잠금 경합을 제거하는 내부 버전 관리 메커니즘에 기반합니다. 잠금 경합이 감소되면 처리량이 더 높아질 수 있습니다.

    스냅샷 기반 격리 하에서 읽기 작업은 동시 업데이트에서 차단되지 않고서 버전 관리되는 데이터에 액세스할 수 있습니다. 이렇게 차단이 감소되면 동시 작업 부하에서 트랜잭션 처리량이 잠재적으로 향상됩니다.

    스냅샷 격리를 사용하면 업데이트 시 XML 열 값과 해당 주/보조 XML 인덱스 행이 버전 관리됩니다. 이렇게 하면, XML이 아닌 열의 수정으로 인해 포함하는 행이 버전 관리되는 경우 XML 열의 불필요한 버전 관리를 피할 수 있습니다. 이 최적화는 XML 처리에 있어 스냅샷 격리를 매우 유용하게 만듭니다.


    쿼리 및 데이터 수정

    인덱스된 XML에 대한 여러 value() 메서드 실행 병합

    인덱스된 경우에 더 빠른 실행을 위해, SELECT 목록의 동일한 형식화된 XML 열에서 여러 value() 메서드의 실행을 결합할 수 있습니다. 실행을 결합할지 여부는 쿼리 분석기가 쿼리 비용을 기반으로 결정합니다. 이로 인해 속도가 현저히 향상됩니다. 아래에 예제가 나와 있습니다.


    예제: 여러 value() 메서드 실행 결합

    XML 스키마 모음 bookCollection에 있는 XML 스키마 이름 공간 "http://www.microsoft.com/book"에 의해 요소의 콘텐츠 모델이 정의된다고 가정합시다. 또한 이 예제에서 XML 열 xDoc이 docs 테이블에 추가되고 bookCollection을 사용하여 형식화된다고 가정합시다. XML 스키마 정의는 아래와 같습니다.


    CREATE XML SCHEMA COLLECTION bookCollection AS
    '<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns="http://www.microsoft.com/book"
    targetNamespace="http://www.microsoft.com/book">
    <xsd:element name="book" type="bookType" />
    <xsd:complexType name="bookType">
    <xsd:sequence>
    <xsd:element name="title" type="xsd:string" />
    <xsd:element name="author" type="authorName"
    maxOccurs="unbounded"/>
    <xsd:element name="price" type="xsd:decimal" />
    </xsd:sequence>
    <xsd:attribute name="subject" type="xsd:string" />
    <xsd:attribute name="releasedate" type="xsd:integer" />
    <xsd:attribute name="ISBN" type="xsd:string" />
    </xsd:complexType>
    <xsd:complexType name="authorName">
    <xsd:sequence>
    <xsd:element name="first-name" type="xsd:string" />
    <xsd:element name="last-name" type="xsd:string" />
    </xsd:sequence>
    </xsd:complexType>
    </xsd:schema>'
    GO

    ALTER TABLE docs ADD COLUMN xDoc XML (DOCUMENT bookCollection)
    GO


    아래 쿼리에서는, value() 메서드가 동일한 XML 열에서 호출되고 <title> 및 <price> 요소의 단일 카디널리티가 XML 스키마에서 정적으로 추론되기 때문에 value() 메서드의 실행을 결합합니다.


    WITH XMLNAMESPACES ('http://www.microsoft.com/book' AS "bk")
    SELECT xCol.value ('/bk:book/bk:title', 'nvarchar(128)') Title,
    xCol. value('/bk:book/bk:price', 'decimal(5,2)') Price
    FROM docs


    최적화가 발생하려면 다음 조건이 유지되어야 합니다.

  • 열을 형식화하는 XML 스키마 모음에서 노드의 단일 카디널리티를 추론할 수 있도록 XML 열을 형식화해야 합니다. 해당되는 경우 열 옵션 DOCUMENT을 사용하여 XML 열을 선언해야 합니다. 그렇지 않으면 nodes() 메서드를 사용하여 단일 노드 참조를 생성해야 합니다. 또한 nodes() 메서드가 단일 요소를 보장하는 데 사용되고 value() 메서드가 그러한 요소에서 특성 값을 추출하는 경우 형식화되지 않은 XML에 대해서도 최적화가 작동합니다.
  • 최적화가 발생하려면 전체 경로를 지정해야 합니다. 와일드카드(*), 하위 항목 축(// operator), 상위 항목 축(..), XPath 함수 및 노드 테스트(예: node())를 포함하는 경로는 이러한 최적화의 발생을 막습니다.
  • value() 메서드의 경로 식은 술어 또는 서수를 포함하지 않을 수 있습니다.
  • nodes() 메서드에서 얻은 컨텍스트 항목과 관련된 경로 식에 대해 최적화가 발생하는데, 이러한 경우 value() 메서드의 첫 번째 인수는 위 제약과 더불어 전체 상대 경로여야 합니다.
  • value() 메서드 호출이 병합되려면 SELECT 목록에서 연속적으로 나타나야 합니다. 불연속적인 value() 메서드의 실행은 결합될 수 없습니다.

    또한 xCol.value(…) = xCol.value(…)와 같은 술어에 대해 T-SQL WHERE 절의 value() 메서드에서 최적화가 발생할 수 있습니다. xCol.value(…) = constant의 술어에서는 최적화가 발생하지 않습니다.

    존재 확인을 위해 exist() 메서드 사용

    보다 나은 성능을 위해 가능한 경우 XML 데이터 형식의 value() 메서드 대신 exist() 메서드를 사용하십시오. exist() 메서드는 SQL WHERE 절에서 사용하는 경우 가장 유용하며 value() 메서드보다 XML 인덱스를 더 효과적으로 활용합니다. XQuery 식에서 sql:variable() 및 sql:column()을 사용하는 경우에도 마찬가지입니다.

    예를 들어, exist() 메서드를 사용하여 "Writing Secure Code"라는 제목의 책을 검색하는 다음 쿼리를 살펴봅시다.


    SELECT *
    FROM docs
    WHERE xCol.exist('(/book/title/text())[.="Writing Secure Code"]') = 1


    PATH 또는 VALUE 보조 XML 인덱스가 이들 인덱스에서의 값 조회(이 예제에서 "Writing Secure Code")를 포함하여 경로 식((/book/title/text())[.="Writing Secure Code"])을 평가하여 반환할 XML 인스턴스를 산출하기 위해 사용됩니다. 경로 및 검색 값의 선택성이 높은 경우 결과 실행이 열의 모든 XML blob에 대해 경로 식을 평가하는 것보다 훨씬 더 빠를 수 있습니다. 검색 값은 sql:variable() 또는 sql:column()을 사용하여 제공할 수 있습니다. 자세한 내용은 이 문서의 "XQuery 및 XML DML 식 매개 변수화"를 참조하십시오.

    아래와 같이 value() 메서드를 사용하여 작성한 쿼리는


    SELECT *
    FROM docs
    WHERE xCol.value('(/book/title)[1]', 'varchar(50)') = 'Writing Secure Code'


    먼저 모든 책 제목을 평가한 다음 필터 "Writing Secure Code"를 적용합니다. 이렇게 하면 XML 인덱스 조회에서 필터 값 "Writing Secure Code"가 사용되지 않기 때문에 쿼리 실행의 효율성이 떨어집니다. SQL 변수 또는 또 다른 value() 메서드를 사용하여 지정한 필터 값도 유사한 동작(behavior)을 나타냅니다.

    nodes()-value() 결합 사용
    nodes() 메서드는 value() 메서드 내에서 사용할 수 있는 내부 노드 참조의 행 집합을 생성하여 이들 노드에서 스칼라 값을 추출합니다. 이들 메서드를 함께 사용하여 XML 데이터를 관계형 형식으로 표시할 수 있습니다.

    아래 예제에서 보는 대로, value() 메서드에서 컨텍스트 노드의 특성을 선택하는 데 사용되는 서수 술어가 제거될 수 있도록 nodes() 메서드의 출력에서 각 행은 단일 참조를 표시합니다. 또한 nodes() 메서드가 정확히 하나의 참조를 제공할 경우 nodes() 메서드를 완전히 제거하면 쿼리가 더 빠르게 수행됩니다. 이러한 최적화는 XML 변수 및 매개 변수에 가장 유용합니다.


    예제: nodes() 메서드로 서수 술어 제거

    이 쿼리는 docs테이블의 xCol 열에 있는 각 책의 인스턴스에서 ISBN 특성을 추출합니다. nodes() 메서드는 각 개별 <book> 요소(컨텍스트 노드)에 대한 별도의 참조를 내보내고 컨텍스트 노드에는 최대 하나의 @ISBN 특성이 있을 수 있습니다.


    SELECT ref.value('@ISBN', 'nvarchar(32)')
    FROM docs CROSS APPLY xCol.nodes('/book') AS node(ref)


    각 XML 인스턴스에서 요소가 하나만 발생할 경우 다음의 다시 작성된 쿼리가 더 빠릅니다.


    SELECT xCol.value('(/book/@ISBN)[1]', 'nvarchar(32)')
    FROM docs


    XML blob을 위한 최적화


    XML 변수 및 매개 변수의 더 나은 확장성을 위한 여러 개의 tempDB 파일

    XML 변수 및 매개 변수는 그 값이 작은 경우에는 주 메모리를 저장소로 사용합니다. 단, 큰 값은 tempdb 저장소에서 백업합니다. 다중 사용자 시나리오에서 많은 수의 대형 XML blob이 발생할 경우 tempdb 경합이 충분한 확장성을 위해 병목 상태를 일으킬 수 있습니다. 여러 개의 tempdb 파일을 만들면 저장소 경합이 감소되고 확장성이 훨씬 더 좋아집니다. 다음 예제는 여러 개의 tempdb 파일을 만들 수 있는 방법을 보여줍니다.


    예제: 여러 개의 tempdb 파일 만들기

    이 예제에서는 각각 처음 크기가 8MB인 두 개의 tempdb용 추가 데이터 파일과 각각 처음 크기가 1MB인 두 개의 로그 파일을 만듭니다.


    USE TEMPDB
    GO

    ALTER DATABASE tempdb ADD FILE
    (NAME = 'Tempdb_Data1',
    FILENAME = 'C:\temp\Tempdb_Data1.MDF', SIZE = 8 MB),
    (NAME = 'Tempdb_Data2',
    FILENAME = 'C:\temp\Tempdb_Data2.MDF', SIZE = 8 MB)
    GO

    ALTER DATABASE tempdb ADD log FILE
    (NAME = 'Tempdb_Log1',
    FILENAME = 'C:\temp\Tempdb_Log1.LDF', SIZE = 1 MB),
    (NAME = 'Tempdb_Log2',
    FILENAME = 'C:\temp\Tempdb_Log2.LDF', SIZE = 1 MB)
    GO


    이 파일은 ALTER DATABASE tempdb REMOVE FILE 명령을 사용하여 제거될 수 있습니다. 자세한 내용은 SQL Server 2005용 SQL Server 온라인 설명서를 참조하십시오.


    XML 데이터 형식으로의 추가 캐스트 제거

    XML 형식의 입력 인수를 가진 inlinable 함수에서 호출자는 XML 데이터 형식으로 암시적으로 변환되는 텍스트 또는 이진 값을 제공할 수 있습니다. 호출 수신자의 본문에서 XML 인수의 각 사용은 입력 값을 XML 데이터 형식으로 캐스트합니다. 이 비용은 인수를 XML 데이터 형식 변수(XML 데이터 형식으로 한 번의 인수 값 변환 유발)로 복사함으로써 피할 수 있고 XML 변수는 함수 또는 저장 프로시저의 본문에서 여러 번 사용할 수 있습니다. 다음 예제는 이러한 특징을 예시합니다.


    예제: 변환 제거

    책의 제목 및 ISBN을 반환하는 아래 GetTitleAndIsbnOfBook() 함수를 살펴봅시다.


    CREATE FUNCTION GetTitleAndIsbnOfBook (@book XML)
    RETURNS TABLE AS
    RETURN
    SELECT @book.value ('(/book/@ISBN)[1]', 'nvarchar(32)') ISBN,
    @book.value ('(/book/title)[1]', 'nvarchar(128)') title


    함수가 문자열 값으로 호출되면 각 value() 메서드 호출에 대해 XML 데이터 형식으로의 변환이 발생합니다. 함수는 XML 데이터 형식으로의 인수 변환이 한 번만 발생하도록 다음과 같이 다시 작성될 수 있습니다. 하지만 다중 명령문 테이블 반환 함수에 필요한 테이블 변수 @retTab으로 인해 추가 비용이 발생하는데, 이 비용은 XML 데이터의 크기가 큰 경우 XML 변수에 대한 충분한 횟수의 액세스로 상쇄될 수 있습니다.


    CREATE FUNCTION GetTitleAndIsbnOfBookOpt (@book varbinary(max))
    RETURNS @retTab TABLE (ISBN nvarchar(32), title nvarchar(128)) AS
    BEGIN
    DECLARE @xbook XML
    SET @xbook = @book
    INSERT INTO @retTab
    SELECT @xbook.value ('(/book/@ISBN)[1]', 'nvarchar(32)'),
    @xbook.value ('(/book/title)[1]', 'nvarchar(128)')
    RETURN
    END


    단일 요소 지정

    단일 카디널리티 평가는 쿼리 및 데이터 수정 문에서 서수를 지정할 필요성을 제거합니다. 이로 인해 쿼리 계획이 간소화되고 효율적인 JOIN 작업이 생성됩니다. 일반적으로 단일 카디널리티 평가에는 중첩 루프 조인에서 내부 및 외부 루프에 대한 적절한 선택이 수반됩니다.

    형식화된 XML에서 기본적으로 요소는 minOccurs 및 maxOccurs의 값을 사용하여 재정의되지 않는다면 XML 스키마 구조의 단일 카디널리티를 갖습니다. 또한 형식화된 XML 열, 변수 및 매개 변수의 DOCUMENT 제약 조건은 XML 데이터 형식 인스턴스에서 정확히 하나의 최상위 요소를 보장합니다.

    형식화되지 않은 데이터의 경우 또는 스키마에 여러 형제 요소가 허용되는 경우, 아래 예제에 나타난 대로 경로 식을 만족시키는 노드를 정확하게 하나만 선택하는 서수 값을 사용하여 노드의 단일 카디널리티가 경로 식에 표시될 수 있습니다. 서수 [1]은 Transact -SQL TOP 1 오름차순을 사용하여 평가되는 반면 서수 last()는 TOP 1 내림차순으로 평가됩니다. 또한 nodes() 메서드는 결과 XML 인스턴스 각각에 대해 단일 컨텍스트 항목을 설정합니다.

    단일 노드의 선택이 생략된 경우 쿼리 최적화 프로그램이 지나치게 높을 수 있는 기본 카디널리티 평가를 사용합니다. 예를 들면, 이는 술어를 처리해야 하는 경우 중첩 루프 조인에서 내부 및 외부 루프에 대해 차선책을 선택하게끔 유발할 수 있습니다. 그 효과는 XML 인덱스가 존재하지 않고 보다 효율적인 카디널리티 평가를 위해 사용할 수 있는 통계 정보가 없는 XML blob의 경우에 더욱 크게 나타납니다.


    예제: 형식화되지 않은 XML의 단일 카디널리티 지정

    xCol 열의 각 XML 인스턴스가 <title> 하위 요소를 하나만 갖는 최상위 요소를 하나만 포함한다고 가정합시다. 다음 쿼리를 살펴봅시다.


    SELECT xCol.query ('/book/title')
    FROM docs


    쿼리 최적화 프로그램은 <title> 요소에 기본 카디널리티 평가를 사용합니다. 각 <book>은 <title>이 단일 요소가 되도록 하나의 제목을 갖지만 최적화 프로그램의 평가는 그에 비해 훨씬 더 높습니다. 다시 공식화한 다음 쿼리는


    SELECT xCol.query ('(/book/title)[1]')
    FROM docs


    올바른 카디널리티를 최적화 프로그램에 전달합니다. 비슷한 모양의 경로 식 (/a/b)[1]과 /a/b [1] 간의 의미론적 차이점이 MSDN 기사 Microsoft SQL Server 2005를 위한 최상의 XML 사용 방법에 설명되어 있습니다.


    XML 데이터 형식 메서드의 다중 실행 제거

    다음 쿼리는


    SELECT case isnumeric (xCol.value ('(/book/price)[1]', 'nvarchar(32)'))
    when 1 then xCol.value ('(/book/price)[1]', 'decimal(5,2)')
    else 0
    end
    FROM docs


    책의 <price>를 계산한 다음 가격이 숫자 형식인 경우 가격을 십진수(5, 2)로 변환합니다. 이 논리는 응용 프로그램에서 숫자가 아닌 가격 값이 발생할 수 있는 경우에 유용합니다.


    SELECT case isnumeric(Price)
    when 1 then CAST (Price AS decimal(5,2))
    else 0
    end
    FROM (SELECT xCol.value ('(/book/price)[1]', 'nvarchar(32)') Price
    FROM docs) T


    동일한 최적화가 NULLIF()와 같은 다른 곳에서도 사용될 수 있습니다.


    SELECT NULLIF (Title, '')
    FROM (SELECT xCol.value ('(/book/title)[1]', 'nvarchar(64)') Title
    FROM docs) T


    NULLIF()에서 value() 메서드를 사용하면 이 메서드가 비어 있지 않은 문자열을 반환할 경우 value() 메서드가 두 번 처리됩니다.


    Data(),text() 및 string() 접근자

    XQuery는 노드에서 형식화된 원자 값을 추출하기 위한 fn:data() 함수, 텍스트 노드를 반환하기 위한 노드 테스트 text() 및 노드의 문자열 값을 반환하기 위한 fn:string() 함수를 제공합니다. 이들의 사용은 혼동될 수 있습니다. SQL Server 2005에서 이를 올바로 사용하기 위한 지침이 XML 인스턴스 <age>12</age>를 사용하여 아래에 예시되어 있습니다.

  • 형식화되지 않은 XML: 경로 식 /age/text()는 값이 “12”인 <age> 아래에 텍스트 노드를 반환합니다. fn:data(/age) 함수는 fn:string(/age)처럼 문자열 값 “12”를 반환합니다.
  • 형식화된 XML: /age/text() 식은 SQL Server 2005에서 모든 단순한 형식화된 <age> 요소에 대한 정적 오류를 반환합니다. <age>가 단순한 정수 콘텐츠를 갖는 경우에는 fn:data(/age)가 정수 12를 반환하는 반면, fn:string(/age[1])은 문자열 “12”를 산출합니다. 이들 함수는 서로 다른 성능 특성을 갖습니다. Fn:string()은 컨텍스트 노드 아래의 모든 텍스트 노드를 재귀적으로 집계합니다. 컨텍스트 노드가 단일값인 경우 이 방식은 과도하며, 이 경우에는 fn:data() 및 text()로도 충분할 뿐만 아니라 더 효과적입니다.

    형식화되지 않은 XML의 경우 노드의 값이 필요할 때, text()를 사용하여 텍스트 노드를 반환하는 것이 fn:data()를 사용하여 반환하는 것보다 더 빠릅니다. 경로 식 /book/text()는 <book> 요소의 텍스트 노드 자식(child)을 반환합니다. query() 메서드 내에서 이러한 텍스트 노드는 직렬화되고 텍스트 노드 값의 연결로 나타납니다. 반면, fn:data()는 <book> 요소의 하위 트리에 있는 모든 값을 집계합니다. 이 집계는 간단한 콘텐츠를 가진 요소의 경우일지라도 fn:data()의 계산이 text()의 계산보다 비용이 더 많이 소요되게 만듭니다.

    형식화되지 않은 XML에서 텍스트 집계

    XQuery 의미론에 따라, 형식화되지 않은 XML에서 다음과 같은 두 쿼리는 술어를 평가하기 위해 <title> 요소 아래의 모든 텍스트 노드를 집계해야 합니다. 이 때문에 검색 문자열에 대한 XML 인덱스 조회가 억제됩니다.


    SELECT xCol.value ('(/book/title[.="Writing Secure Code"])[1]',
    'nvarchar(64)')
    FROM docs


    또는


    SELECT xCol.value ('(/book/title
    [fn:string()="Writing Secure Code"])[1]'), 'nvarchar(64)')
    FROM docs


    <title> 요소에 텍스트 노드가 하나만 있는 경우 더 효율적인 쿼리 작성 방법은 아래와 같이 텍스트 노드의 술어를 평가하는 방법입니다.


    SELECT xCol.value ('(/book/title/text())[1]
    [. = "Writing Secure Code"]', 'nvarchar(64)')
    FROM docs


    이 경우에는 "Writing Secure Code" 값에 대한 XML 인덱스 조회가 발생합니다.


    XQuery 및 XML DML 식 매개 변수화

    XQuery 및 XML DML 식은 자동으로 매개 변수화되지 않습니다. 따라서 두 XQuery 식이 매개 변수의 값만 다른 경우, 동적 SQL 문을 사용하는 대신 sql:column() 또는 sql:variable()을 사용하여 XQuery 또는 XML DML 식에 매개 변수 값을 제공하는 것이 더 좋습니다. 이들 함수를 사용하면 쿼리가 자동으로 매개 변수화됩니다.

    아래 예제는 저장 프로시저 실행을 보여줍니다. 이 기법은 쿼리, 함수/메서드 호출 또는 데이터 수정 문의 매개 변수화에 적용할 수 있습니다.

    예를 들어, 아래 저장 프로시저는 입력 인수보다 낮은 가격의 책을 찾습니다.


    CREATE PROC sp_myProc
    @Price decimal
    AS
    SELECT *
    FROM docs
    WHERE 1 = xCol.exist('(/book/price)[. < sql:variable("@Price")]')


    ADO.NET 및 OLEDB에서 @Price의 입력 값을 매개 변수에 바인딩합니다. 이렇게 하면 매개 변수가 서로 다른 값에 바인딩될 때 쿼리를 다시 컴파일할 필요가 없습니다. sql:column()을 사용하면 이와 비슷한 이점을 얻을 수 있습니다.

    다음 Visual Basic.NET 코드는 저장 프로시저 호출에서 매개 변수 바인딩을 보여줍니다.


    'myConn is the connection string
    SqlCommand cmd = New SqlCommand("sp_myProc", myConn)
    cmd.CommandType = CommandType.StoredProcedure

    'Parameter binding
    Dim myParm As SqlParameter = cmd.Parameters.Add("@Price", _
    SqlDbType.Decimal)
    myParm.Direction = ParameterDirection.Input
    myParm.value = 2

    'Invoke the stored procedure
    SqlDataReader myReader = cmd.ExecuteReader()

    'Invoke the stored procedure a second time
    myParm.value = 49.99
    SqlDataReader myReader = cmd.ExecuteReader()


    자세한 내용은 Microsoft Visual Studio.NET 설명서 (영문)를 참조하십시오.


    예제: 데이터 수정에서 sql:variable() 사용

    ISBN이 "0-2016-3361-2"인 <book>의 <price>가 10% 할인되었다고 가정합시다. 할인과 ISBN 둘 다 XML 데이터 수정 문에 매개 변수로 전달될 수 있고 이 문은 다른 책 또는 다른 할인에 대해 똑같이 유지됩니다.


    DECLARE @discountFactor decimal, @sqlisbn nvarchar(32)
    SET @discountFactor = 0.9
    SET @sqlisbn = N'0-7356-1588-2'

    UPDATE docs
    SET xCol.modify('replace value of (/book/price/text())[1] with
    sql:variable("@discountFactor")*(/book/price/text())[1]')
    WHERE xCol.exist('/book[@ISBN = sql:variable("@sqlisbn")]') = 1


    예제 : 요소 구성에서 sql:variable() 사용

    아래에 나와 있는 modify() 메서드는 구성된 요소 내에서 값을 제공하기 위한 sql:variable()의 사용을 보여줍니다.


    DECLARE @name nvarchar(64)
    SET @name = 'Microsoft Press'
    UPDATE docs
    SET xCol.modify ('
    insert < publisher Name = "{sql:variable("@name")}"></publisher>
    into (/book/title)[1]')


    술어 및 서수의 최적화

    노드 테스트 또는 분기가 없는(즉, 경로의 중간 노드에 술어 또는 서수가 없는) 전체 경로(즉, 루트 노드로부터 자식(child) 및 자신의 축만을 포함하는 선택한 노드에 이르는 절대 위치 경로)는 분기가 있는 경로 식보다 효율적으로 평가할 수 있습니다. 인덱스된 경우에 전체 경로는 인덱스 탐색에 사용될 수 있습니다. XML blob의 경우, 이러한 경로의 구문 분석은 분기 또는 와일드카드(*)가 있는 경로의 구문 분석보다 더 빠릅니다.

    경로 끝부분의 노드 테스트 및 술어는 선택한 노드에서 필터로 사용됩니다. 인덱스가 사용됩니다. XML blob의 경우 구문 분석이 효율적입니다. 아래에 예제가 나와 있습니다.


    예제: 전체 경로 평가

    이름이 Davis인 저자가 쓴 책을 선택하는 경로 식을 생각해 봅시다.


    SELECT xCol.query ('/book[author/first-name = "Davis"]')
    FROM docs


    술어가 <book> 요소에 직접 존재하지 않더라도 축소 경로 /book/author/first-name을 사용하여 위치한 <first-name> 노드는 값 "Davis"에 의해 필터링됩니다. 반환된 <book> 요소는 주어진 술어를 충족하는 것들입니다.

    경로 기반 조회는 /book//first-name과 같이 술어 또는 서수가 없는 부분적으로 지정된 경로에도 효율적입니다. 쿼리 컴파일러는 XML 인덱스에서 이러한 경로를 일치시키기 위해 LIKE 연산자를 사용합니다. 그러므로 가능한 한 경로의 많은 부분을 지정하는 것이 보다 효율적인 처리에 도움이 됩니다.

    /book[@ISBN = "1-8610-0157-6"]/author/first-name에서와 같이 분기(즉, 경로 식의 중간에 있는 노드 테스트 및 서술어)는 경로 식 /book[@ISBN = "1-8610-0157-6"] 및 /book/author/first-name을 평가하고 <book> 요소의 두 집합 사이의 교집합을 취합니다. 따라서 분기 없는 경로 식보다 실행이 느려집니다. 경로 식의 중간에 노드 테스트 및 술어를 사용하는 것을 가능한 한 피하는 것이 효과적입니다. 이는 “일반적 태그와 구체적 태그의 비교” 예제에 설명된 대로, 데이터 모델링 시 신중한 주의를 기울임으로써 가능한 경우가 종종 있습니다.


    경로의 끝으로 서수 이동

    정적 형식의 정확성을 위해 경로 식에 사용되는 서수는 경로 식의 끝부분에 넣을 수 있는 좋은 후보입니다. 경로 식 book[1]/title[1]은 (/book/title)[1]과 동일합니다. 후자는 문서 순서에서 <book> 요소 아래의 첫 번째 <title> 요소를 확인함으로써 XML 인덱스 및 XML blob 두 경우 모두에 대해 모두 더 빠르게 평가될 수 있습니다. 이와 유사하게 경로 식 (/book/@ISBN)[1]은 /book[1]/@ISBN보다 더 빠른 실행을 가져옵니다.


    컨텍스트 노드를 사용한 술어 평가

    술어, 서수 및 노드 테스트를 경로 식의 끝으로 이동하는 것 외에도 컨텍스트 노드를 사용하여 이러한 조건을 평가하면 한층 더 나은 성능을 얻을 수 있습니다. 아래에 이에 대한 쿼리 재작성 예제가 나와 있습니다.


    예제: 컨텍스트 노드를 사용한 술어 평가

    아래 쿼리는 “security”라는 제목의 책을 검색합니다. 이 쿼리에는 두 경로 식, /book 및 /book/@subject의 평가와 후자 경로에 대한 “security” 값 확인이 필요합니다.


    SELECT *
    FROM docs
    WHERE xCol.exist ('/book[@subject = "security"]') = 1


    다시 작성된 아래 쿼리는 단일 경로 /book/@subject를 평가하고 이 경로에 "security" 값이 있는지 확인합니다. 이렇게 하면 위 쿼리보다 쿼리 계획이 더 단순해지고 실행이 훨씬 더 빨라집니다.


    SELECT *
    FROM docs
    WHERE xCol.exist ('/book/@subject[. = "security"]') = 1


    범위 조건

    범위 조건은 형식화된 XML의 사용을 통해 이점을 얻습니다. XML 열 및 XML 인덱스에 저장된 데이터는 XML 스키마에 지정된 형식 정의에 따라 형식화됩니다. 값 비교는 데이터의 런타임 변환을 피하고 VALUE 보조 XML 인덱스에 대한 범위 스캔을 허용합니다. 또한 이를 위해서는 다음 예제에 나타난 대로, 효율적인 액세스를 위해 범위 조건에 컨텍스트 노드(.)를 지정해야 합니다.


    예제: 범위 조건의 컨텍스트 노드

    $9.99와 $49.99 범위에 있는 가격대의 책을 찾는 쿼리를 고려해 봅시다.


    SELECT xCol
    FROM docs
    WHERE xCol.exist ('/book[price > 9.99 and price < 49.99]') = 1


    경로 식 /book/price > 9.99 및 /book/price < 49.99가 각각 따로 평가됩니다. <book> 요소 아래에 여러 <price> 요소가 존재할 수 있기 때문에 쿼리 최적화 프로그램은 <price> 요소가 동일하다는 사실을 알지 못합니다. 이 때문에 VALUE 보조 XML 인덱스에 대한 범위 스캔이 억제됩니다. 아래에 다시 작성된 쿼리는 <price>에 동일한 컨텍스트 노드를 사용하고 9.99와 49.99 사이의 값에 대해 VALUE 보조 XML 인덱스의 범위 스캔이 발생하도록 보장합니다. 이로 인해 성능이 더 좋아집니다.


    SELECT xCol
    FROM docs
    WHERE xCol.exist ('/book/price[. > 9.99 and . < 49.99]') = 1


    동적 쿼리

    XQuery 식은 XML 데이터 형식 메서드 내에서 리터럴로 지정됩니다. 이들의 평가는 사용 가능한 경우 쿼리 최적화 프로그램에서 선택한 XML 인덱스를 사용합니다.

    XQuery 식을 리터럴 대신 동적으로 지정할 수 있으면 응용 프로그램 개발이 편리합니다. 이는 다음 방식으로 가능합니다.

    쿼리 구성
    쿼리를 문자열로 작성하고 sp_executesql을 사용하여 실행합니다. EXEC와 달리, 이렇게 하면 컴파일된 쿼리 계획이 캐시되어 최적화 프로그램이 컴파일된 계획을 다시 사용할 수 있습니다. 쿼리는 문자열로 구성되므로 매개 변수화될 수 있고 포함된 매개 변수를 포함할 수 있습니다. SQL 주입 공격을 피하려면 충분한 주의를 기울여야 합니다.

    XPath 함수 사용
    XPath 식의 각 위치 단계를 name() 함수 또는 local-name() 및 namespace-URI() 함수로 대체합니다. 이렇게 하면 노드 이름 및 검색 값으로 전달할 수 있는 쿼리가 만들어집니다. "XQuery 또는 XML DML 식 매개 변수화" 예제에 설명된 대로 추가적으로 매개 변수화할 수 있습니다. 이와 같은 매개 변수화된 쿼리는 응용 프로그램 개발에 편리합니다. 하지만 컴파일 시에 구체적인 경로가 알려지지 않으므로, 이에 대해 생성된 쿼리 계획은 XML 인덱스를 무시합니다.

    쿼리 구성 접근 방법은 경로 식 매개 변수화보다 더 능률적으로 작동하지만 런타임 쿼리 컴파일 비용이 들기 때문에, 전체 쿼리를 리터럴로 지정하는 것보다 더 느려집니다. 사용자가 전달한 실제 쿼리는 SQL 주입 공격을 피하기 위해 유효성이 검사되어야 합니다. 그렇지 않으면, 쿼리의 매개 변수화(이 문서의 “XQuery 및 XML DML 식 매개 변수화")를 위해 이 접근 방법을 사용하지 말아야 합니다. 다음 예제는 이 접근 방법을 예시합니다.

    노드 이름을 사용하여 노드 테스트를 지정하는 두 번째 접근 방법은 SQL 주입 문제를 방지합니다. 하지만 쿼리 계획이 복잡해지고 원래 쿼리보다 훨씬 더 비능률적으로 수행됩니다. 이 접근 방법은 두 번째 예제에 나와 있습니다.


    예제: sp_executesql를 사용한 쿼리

    다음 쿼리를 동적으로 작성하여 매개 변수를 사용하여 @subject의 검색 값을 전달하기를 원한다고 가정합시다.


    SELECT *
    FROM docs
    WHERE xCol.exist('/book[@subject = "security"]') = 1


    동적 쿼리를 아래에 나타난 대로 작성하고 실행할 수 있습니다. 쿼리 문자열은 @SQLString 변수에 만들어지고 exist() 메서드에서 사용된 포함된 변수 @bksubj를 포함합니다. @subj 변수는 매개 변수의 런타임 값을 제공합니다. @SQLString을 사용하여 전달된 동적 쿼리는 SQL 주입 공격을 피하기 위해 유효성이 검사되어야 합니다(아래에는 표시되어 있지 않습니다).


    DECLARE @SQLString NVARCHAR(500)
    DECLARE @subj NVARCHAR(64)
    DECLARE @ParmDefinition NVARCHAR(500)
    --- Build the SQL string once
    SET @SQLString =
    N'SELECT *
    FROM docs
    WHERE xCol.exist(''/book[@subject=sql:variable("@bksubj")]'')=1'
    SET @ParmDefinition = N'@bksubj NVARCHAR(64)'
    --- Execute the string with the first parameter value
    SET @subj = 'security'
    EXECUTE sp_executesql @SQLString, @ParmDefinition,
    @bksubj = @subj


    예제: local-name()을 사용한 쿼리

    위 쿼리를 다음과 같이 태그 이름을 리터럴로 사용하도록 다시 작성할 수 있습니다.


    DECLARE @elemName nvarchar(4000), @attrName nvarchar(4000)
    DECLARE @subjValue nvarchar(4000)
    SET @elemName = N'book'
    SET @attrName = N'subject'
    SET @subjValue = N'security'
    SELECT *
    FROM docs
    WHERE xCol.exist('/*[local-name() = sql:variable("@elemName") and
    @*[local-name() = sql:variable("@attrName") and
    . = sql:variable("@subjValue")]]') = 1


    다시 작성된 쿼리는 와일드카드(*)와 노드 이름을 사용하는 노드 테스트를 포함하므로 효과적으로 최적화하기가 어렵습니다. 결과적으로 원래 쿼리 및 쿼리 구성 접근 방법에 비해 훨씬 더 비능률적으로 수행됩니다.


    XML 데이터에서 행 집합 생성

    일부 응용 프로그램은 하나 이상의 속성을 행 집합의 열로 승격함으로써 XML 데이터에서 행 집합을 생성해야 합니다. 예를 들어, 응용 프로그램은 책의 저자를 쿼리하고 성 및 이름에 대해 두 개의 열을 포함하는 테이블로 결과를 표시할 수 있습니다. 이러한 행 집합 생성은 서로 다른 성능 특성을 지닌 서버 또는 클라이언트에서 모두 수행될 수 있습니다.

  • 서버에서 다음 메커니즘 중 하나를 사용하십시오.
    • XML 데이터 형식의 nodes() 및 value() 메서드의 결합
    • OpenXML
    • CLR(공용 언어 런타임)에서 테이블 반환 함수 스트리밍
  • 또한 XML 결과가, 클라이언트 쪽 프로그래밍(예: DataSet)을 사용하여 데이터를 행 집합으로 변환하는 클라이언트에게 반환됩니다. 클라이언트 쪽 행 집합 생성은 서버의 부하를 덜어주므로 서버에서 클라이언트로 전송된 거의 전체 데이터가 행 집합으로 매핑되는 경우에 유용합니다. 그렇지 않은 경우에는 데이터 제공 비용이 클라이언트 쪽 처리 이점보다 더 클 수 있습니다.

    서버 쪽 행 집합 생성은 서버에서 들어오는 XML 데이터로부터의 행 집합 생성에 유용합니다. 이 방식은 서버에 저장된 XML 데이터의 일부분만이 행 집합의 열로 승격되는 경우에 일반적으로 더 바람직합니다. 서버 쪽 접근 방법들의 상대적 장점 및 단점에 관한 자세한 설명은 MSDN 기사 Microsoft SQL Server 2005를 위한 최상의 XML 사용 방법에서 찾을 수 있습니다.


    제공 : DB포탈사이트 DBguide.net
  • 728x90

    Microsoft SQL Server 2005의 원시 XML 웹 서비스 개요


    Brad Sarsfield, Srik Raghavan _ Microsoft Corporation


    적용 대상:
    Microsoft SQL Server 2005 (이전에는 "Yukon"으로 알려짐)
    Transact-SQL(T-SQL) 언어

    요약: SQL Server 2005(이전에는 "Yukon"으로 알려짐) 내의 SOAP/HTTP를 사용하여 XML 웹 서비스를 설정하고 사용하는 방법의 개요를 설명합니다. 여기에는 실례가 되는 예제가 포함되어 있습니다. 이 문서를 최대한 활용하려면 HTTP, SOAP 및 WSDL을 포함한 웹 서비스 기술에 대한 기본적인 이해가 필요합니다.


    소개


    Microsoft SQL Server 2005는 HTTP를 통해 SOAP를 사용하는 데이터베이스 엔진에 액세스하기 위한 표준 메커니즘을 제공합니다. 이 메커니즘을 이용하면 SOAP/HTTP 요청을 SQL Server에 전송하여 다음을 실행할 수 있습니다.

  • 매개 변수가 있거나 없는 Transact-SQL 일괄 명령문
  • 저장 프로시저, 확장 저장 프로시저, 스칼라 반환 사용자 정의 함수

    SQL Server 20005 이전에는 SQL Server 연결에 사용할 수 있는 메커니즘은 테이블 형식 데이터 스트림(TDS)이라는 사용자 지정 바이너리 프로토콜을 통하는 방법뿐이었습니다. Microsoft는 SOAP/HTTP 액세스를 이용하여, SQL Server에 연결하기 위한 대안으로 사용할 수 있는 문서화된 개방형 프로토콜을 제공했습니다. SOAP/HTTP 액세스를 제공하면, SQL Server에 연결을 시도하는 클라이언트 장치에 Microsoft Data Access Components(MDAC) 스택을 더 이상 설치할 필요가 없기 때문에, 별도의 공간을 필요로 하지 않는 “제로 풋프린트” 클라이언트를 포함하여 보다 광범위한 클라이언트가 SQL Server에 액세스할 수 있습니다. 이로 인해 다양한 플랫폼에서 .NET, SOAP Toolkit, Perl 등과의 상호 운용성이 용이해집니다. SOAP/HTTP 액세스 메커니즘은 XML 및 HTTP와 같이 잘 알려진 기술을 기반으로 하므로 이 메커니즘은 유형이 다른 환경에서 SQL Server에 대한 액세스 및 상호 운용성을 본질적으로 촉진합니다. XML을 구문 분석하고 HTTP 요청을 제출할 수 있는 모든 장치가 이제 SQL Server에 액세스할 수 있습니다.

    많은 기업들이 UNIX 및 Linux 플랫폼에서 실행되는 응용 프로그램에 SQL Server에 대한 연결이 필요할 수 있는 유형이 다른 환경을 가지고 있습니다. 지금까지는 이러한 사용자들이 사용할 수 있는 솔루션은 JDBC 또는 ODBC 드라이버 중 하나를 사용하는 것이었습니다. SOAP/HTTP 액세스는 이제 비용이 낮은 또 하나의 대안을 제공합니다. SOAP/HTTP 액세스는 DBA가 UNIX에서 실행되고 SQL Server 리소스를 관리하는 Perl로 작성된 스크립트를 가지고 있는 경우의 시나리오에 아주 유용합니다. 또한 Microsoft Visual Studio .NET 또는 Jbuilder와 같은 기본 제공 SOAP/HTTP 지원이 포함된 스마트 통합 개발 환경(IDE)을 사용하여 SQL Server에 연결하는 클라이언트 응용 프로그램 개발에도 유용합니다. 이러한 IDE는 SQL Server와의 통신을 추상화하고 클라이언트 응용 프로그램이 사용할 수 있는 개체를 제공하는 프록시 코드를 생성합니다. 또한 SOAP/HTTP를 사용하면 언제 어디서나 SQL Server에 대한 액세스가 가능하므로, 모바일 또는 산발적으로 연결된 장치를 위한 응용 프로그램의 개발이 쉬워집니다. 일단 연결이 되고 서버가 요청 처리를 시작하면 sqlclient, ODBC, OLEDB와 같은 TDS 기반 클라이언트가 사용하는 기존 메커니즘을 사용하여 연결이 모니터링될 수 있습니다.

    요구 사항


    SQL Server 2005의 기본 웹 서비스는 운영 체제로서 Microsoft Windows Server 2003이 필요한데, 그 이유는 웹 서비스가 이 버전이 제공하는 커널 모드 http 드라이버 http.sys에 의존하기 때문입니다. SQL Server는 커널 모드 http.sys 드라이버를 활용하므로 SQL Server로부터 웹 서비스를 노출하기 위해 IIS를 반드시 설치해야 할 필요가 없어 관리가 간소화됩니다. 대신 IIS 설치 여부의 결정은 응용 프로그램 요구 사항에 입각해야 합니다. 예를 들어 특정 응용 프로그램은 명시적인 중간 계층이 있으면 유리합니다. 이와 같은 경우에는 IIS가 유용할 수 있습니다.


    HTTP 종점


    SQL Server를 HTTP SOAP 요청을 기본적으로 수신할 수 있는 웹 서비스로 설정하려면 HTTP 종점을 만들고 종점이 노출하는 메서드를 정의해야 합니다. HTTP 종점을 만들 때에는 들어오는 HTTP 요청을 수신하기 위해 사용하는 고유 URL을 사용하여 만들어야 합니다. 예를 들어, URL "http://servername/sql"을 사용하여 종점을 만드는 경우 http://servername/sql에 전송되는 SOAP 요청은 http.sys에 의해 포착됩니다. 그런 다음 http.sys가 SOAP 요청을 URL과 연결된 종점을 호스팅하는 SQL Server 인스턴스로 라우팅합니다. 거기에서 요청은 SQL Server 내 SOAP 처리 레이어로 전달됩니다.

    SQL Server 인스턴스에는 여러 개의 종점이 있을 수 있는데, 이 종점은 각각 임의 개수의 저장 프로시저(Transact-SQL 또는 CLR을 사용하여 구현됨)를 WebMethod로 종점에서 노출할 수 있고 SOAP 원격 프로시저 호출(RPC)을 통해 호출될 수 있습니다. WebMethod는 노출되는 실제 저장 프로시저와는 다른 이름을 사용할 수 있습니다. WebMethod 이름은 작업 이름으로 WSDL에서 사용자에게 보여지는 것입니다.

    참고 종점의 WebMethod 절은 SQL Server 2005에만 해당되고 ASMX WebMethod 특성과 무관하다는 사실에 주의해야 합니다.

    사용자는 종점에 대해 ad-hoc Transact-SQL 문을 실행할 수 있습니다. 이 작업은 데이터 정의 언어(DDL)에서 선택적 절을 사용하여 종점에서 Batches를 활성화하여 수행됩니다. Batches를 암시적으로 활성화하면 "sqlbatch"라는 WebMethod가 사용자에게 노출됩니다. 이 개념은 다음에 이어지는 섹션에서 더 자세히 설명됩니다.


    HTTP 종점 만들기


    HTTP 종점은 Transact-SQL DDL을 사용하여 만들어지고 관리됩니다. HTTP 종점을 만드는 작업은 SQL Server 2005에 대한 HTTP/SOAP 액세스 활성화의 첫 번째 단계입니다. 각 종점은 이름 및 결합될 경우 종점의 동작(behavior)을 정의하는 옵션의 모음을 가집니다.

    CREATE HTTP ENDPOINT가 사용되는 방법을 예시하기 위해 SQL Server 웹 서비스를 통해 저장 프로시저를 호출하는 Hello World 예제를 살펴보도록 하겠습니다.

    먼저, 다음 T-SQL을 사용하여 마스터 데이터베이스에 hello world라는 저장 프로시저를 만듭니다. 이 저장 프로시저는 단순히 입력 매개 변수에 제공된 문자열을 표시합니다.


    CREATE PROCEDURE hello_world
    (@msg nvarchar(256))
    AS BEGIN
    select @msg as 'message'
    END


    다음 단계로, 다음 T-SQL을 사용하여 WebMethod로서 이 저장 프로시저에 액세스할 수 있도록 하는 HTTP 종점을 만듭니다.


    CREATE ENDPOINT hello_world_endpoint
    STATE = STARTED
    AS HTTP (
    AUTHENTICATION = ( INTEGRATED ),
    PATH = '/sql/demo',
    PORTS = ( CLEAR )
    )
    FOR SOAP (
    WEBMETHOD
    'http://tempuri.org/'.'hello_world'
    (NAME = 'master.dbo.hello_world'),
    BATCHES = ENABLED,
    WSDL = DEFAULT
    )


    모든 종점은 메타데이터 뷰 master.sys.http_endpoints에서 마스터에 저장됩니다. SOAP 메서드를 정의하지 않는 한 종점은 어떤 SOAP 메서드도 가지지 않습니다. 위 예제에서 저장 프로시저 master.dbo.hello_world를 WebMethod 'hello_world'로 노출했습니다. 이와 같이 WebMethod는 임의의 이름을 가질 수 있습니다. 예를 들면, WebMethod가 'http://tempuri.org' 네임스페이스 아래에서 'testproc1'로 호출될 수도 있었습니다. DEFAULT를 WSDL 절의 값으로 지정하면 기본 형식을 사용하는 WSDL를 생성하여 종점이 WSDL 요청에 응답할 수 있습니다. 위 명령문에서 WSDL=NONE을 설정하여 WSDL 생성을 억제할 수 있습니다. 다음에 이어지는 섹션에서 WSDL 생성에 대해 자세히 설명합니다.


    인증 및 보안

    HTTP 종점은 기본, 다이제스트, 통합(NTLM, Kerberos) 및 SQL Auth라는 표준 인증 메커니즘을 지원합니다. 먼저 HTTP 전송 수준에서 인증합니다. 성공적으로 인증되면, 사용자의 SID를 사용하여 SQL을 인증합니다. 이 과정은 LOGIN_TYPE = MIXED를 지정하여 SQL-AUTH가 종점에서 활성화되는 경우를 제외하고 모든 옵션에 적용됩니다. WsSecurity Username 토큰 헤더를 사용하여SQL Auth 자격 증명이 SOAP 패킷의 일부로 전송됩니다. 또한 관리자는 종점을 기준으로 IP 기반 제한을 설정하여, HTTP 종점으로의 액세스를 특정 IP 또는 IP 범위에 대해서만 허용함으로써 종점에 대한 액세스를 제한할 수 있습니다. 개념적으로 “종점”은 “응용 프로그램”입니다. 단일 응용 프로그램을 구현하는 모든 메서드가 종점에 매핑되므로 응용 프로그램에 대한 액세스를 제어하기 위해 종점에 보안이 적용됩니다. 종점은 설계에 의해 보안됩니다. 종점의 보안을 유지할 수 있도록 도와주는 몇 가지 항목이 아래에 나와 있습니다.

  • 기본적으로 Off로 설정되어 있습니다. 매핑된 기본 종점 또는 웹 메서드가 없으므로 이를 명시적으로 생성 및 지정해야 합니다.
  • 또한 개체에도 보안 검사가 적용되므로, 매핑된 저장 프로시저는 사용자가 종점에 대한 연결 권한 및 저장 프로시저에 대한 실행 권한을 가지고 있는 경우에만 실행 가능합니다.
  • 종점에 연결을 위한 익명 지원을 하지 않습니다. WSDL 요청을 포함한 모든 요청이 인증을 받아야 합니다. 클라이언트가 요청을 제출하기 위해서는 SQL Server 원칙에 비추어 인증을 받아야 합니다.

    종점이 만들어지면 sysadmin 역할의 구성원과 종점의 소유자만 종점에 연결할 수 있습니다. 사용자가 종점에 액세스할 수 있도록 연결 권한을 부여해야 합니다. 이를 수행하려면 다음 명령문을 실행합니다.

    GRANT CONNECT ON HTTP ENDPOINT::hello_world_endpoint TO [DOMAIN\USER]


    Microsoft 이외의 플랫폼에서 클라이언트는 BASIC 또는 SQL Auth 중 하나를 사용하여 SQL Server에 연결할 수 있습니다. 그러나 BASIC 또는 SQL Auth를 사용하려면 채널이 보안되어야 하므로 사용자가 활성화된 SSL이 있는 포트에서만 연결할 수 있습니다.


    WSDL


    WSDL은 웹 서비스를 설명하는 XML로 작성된 문서이며, 서비스가 노출하는 서비스 및 작업(또는 메서드)의 위치를 지정합니다. WSDL은 클라이언트가 웹 서비스와 상호 작용하기 위해 필요한 정보를 제공합니다. Visual Studio .NET 및 Jbuilder와 같은 도구는 WSDL을 사용하여 클라이언트 응용 프로그램이 웹 서비스와 통신하기 위해 사용할 수 있는 프록시 코드를 생성합니다. 종점에 활성화된 WSDL이 있는 경우에는 해당 종점이 WSDL 요청을 받을 때 WSDL을 만듭니다. 이 문서의 앞부분에서 만든 종점은 인증된 요청이 종점에 전송될 때 WSDL을 만듭니다. WSDL 요청은 폼의 간단한 HTTP Get 요청입니다.


    http://servername/sql/demo?wsdl


    서버는 종점에 연결된 메타데이터를 쿼리하고 WSDL을 동적으로 생성합니다. 생성된 WSDL은 저장 프로시저 매개 변수의 풍부한 형식 설명을 제공합니다. 서버는 여러 다른 특성의 WSDL을 생성할 수 있습니다(요청/응답 메시지에서 매개 변수를 설명하기 위해 기본적인 xsd 형식을 사용하는지 또는 복잡한 형식을 사용하는지에 따라 간단한 WSDL 및 복잡한 WSDL로 칭합니다). 기본적으로는 복잡한 형식을 사용합니다.


    SOAP RPC: 메서드 호출


    위에서 만든 종점에서는 이 저장 프로시저 master.dbo.hello_world를 SOAP RPC를 통해 실행할 수 있는 웹 메서드로 노출했습니다. 다음은 HTTP를 사용하는 SOAP를 통해 이 SP를 호출하기 위해 서버에 전송된 soap 메시지의 예제입니다.


    <SOAP-ENV:Envelope
    xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
    <SOAP-ENV:Body>
    <hello_world xmlns="http://tempuri.org/">
    <msg>Hello World!</msg>
    </hello_world>
    </SOAP-ENV:Body>
    </SOAP-ENV:Envelope>


    결과는 다음을 포함하는 SOAP Envelope입니다.


    <SqlRowSet1 xmlns="urn:schemas-microsoft-com:sql:SqlRowSet1">
    <row>
    <message>Hello World!</message>
    </row>
    </SqlRowSet1>


    Batches: AdHoc 쿼리


    T-SQL 명령을 사용하여 종점에서 BATCHES가 ENABLED로 설정된 경우 "sqlbatch"라고 하는 또 다른 SOAP 메서드가 종점에 암시적으로 노출됩니다. sqlbatch 메서드를 이용하면 SOAP을 통해 T-SQL 문을 실행할 수 있습니다. 이 메서드는 두 가지 매개 변수를 취합니다. 첫 번째 매개 변수는 이름이 ""이고 T-SQL 문의 배치입니다. 두 번째 매개 변수는 이름이 ""이고 선택적이며, T-SQL 문이 임의의 매개 변수를 사용한 경우 매개 변수 정보의 배열을 포함합니다. 다음은 이에 대한 예로서, sqlbatch 메서드를 호출하고 매개 변수화된 쿼리를 실행하는 SOAP 요청의 본문입니다.


    <sqlbatch xmlns="http://schemas.microsoft.com/SQLServer/2001/12/SOAP">
    <BatchCommands>
    SELECT EmployeeID, LoginID, Gender
    FROM Employee
    WHERE EmployeeID=@x
    FOR XML AUTO;
    </BatchCommands>
    <Parameters>
    <SqlParameter name="x" sqlDbType="Int" maxLength="20"
    xmlns="http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types/SqlParameter">
    <Value xsi:type="xsd:string">1</Value>
    </SqlParameter>
    </Parameters>
    </sqlbatch>


    이 SOAP 요청으로부터의 응답은 다음과 같습니다.


    <sqlresultstream:SqlXml xsi:type="sqlsoaptypes:SqlXml">
    <SqlXml>
    <employees EmployeeID="1" FirstName="Nancy" LastName="Davolio"/>
    </SqlXml>
    </sqlresultstream:SqlXml>


    관리

    지금까지 종점을 만들고 종점에 대한 SOAP 요청을 전송하는 작업이 얼마나 간단한지 알아보았습니다. 이제 단 하나의 구성 요소, 즉 SQL Server만 관리하면 되므로 관리가 단순화됩니다. IIS 구성 요소를 관리할 필요가 없습니다. 종점 추상화는 IP 필터링을 활성화할 수 있는 관리자에게 더 많은 유연성을 제공합니다. 또한 종점 추상화 덕분에 http/https 웹 트래픽에 사용되는 포트를 재사용할 수 있기 때문에 또 다른 포트를 열 필요가 없습니다. 그리고 특정 사용자들에게만 CONNECT 권한을 명시적으로 부여함으로써 특정 개인에만 한하는 액세스를 위한 종점을 공급할 수 있습니다.


    결론

    Microsoft는 기본 SOAP 액세스를 이용하여 SQL Server에 액세스하기 위한 SOAP/HTTP와 같이 잘 알려지고 문서화된 표준에 기반한 프로토콜을 제공했습니다. 이로 인해 보다 광범위한 클라이언트가 SQL Server에 연결할 수 있어 상호 운용성이 촉진되고 액세스 도달이 용이해집니다.

  • + Recent posts